723
Views
0
CrossRef citations to date
0
Altmetric
Special Issue in Memory of Abdul-Aziz Yakubu

Dynamical questions in volume transmission

, , &
Article: 2269986 | Received 29 Mar 2023, Accepted 05 Oct 2023, Published online: 24 Oct 2023

References

  • N. Abudukeyoumu, T. Hernandez-Flores, M. Garcia-Munoz, and G. Arbuthnott, Cholinergic modulation of striatal microcircuits, Eur. J. Neurosci. 49 (2019), pp. 604–622.
  • A. Adell, P. Celada, M.T. Abella, and F. Artigasa, Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei, Brain Res. Rev. 39 (2002), pp. 154–180.
  • Y. Agid, Parkinson's disease: pathophysiology, Lancet 337 (1991), pp. 1321–1324.
  • E. Benarroch, Effects of acetylcholine in the striatum, Neurology 79 (2012), pp. 274–281.
  • B. Bergstrom and P. Garris, ‘Passive stabilization’ of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson's disease: a voltammetric study in the 6-OHDA-lesioned rat, J. Neurochem. 87 (2003), pp. 1224–1236.
  • H. Bernheimer, W. Birkmayer, O. Hornykiewicz, K.K. Jellinger, and F. Seitelberger, Brain dopamine and the syndromes of Parkinson and Huntington, J. Neurol. Sci. 20 (1973),pp. 415–455.
  • J. Best, W. Duncan, F. Sadre-Marandi, P. Hashemi, H.F. Nijhout, and M. Reed, Autoreceptor control of serotonin dynamics, BMC Neurosci. 21 (2020), p. 40.
  • J.A. Best, H.F. Nijhout, and M.C. Reed, Homeostatic mechanisms in dopamine synthesis and release: a mathematical model, Theor. Biol. Med. Model. 6 (2009), p. 21.
  • J. Best, H.F. Nijhout, S. Samaranayake, P. Hashemi, and M. Reed, A mathematical model for histamine synthesis, release, and control in varicosities, Theor. Biol. Med. Model. 14 (2017),p. 24.
  • E. Bezard, S. Dovero, C. Prunier, P. Ravenscroft, S. Chalon, D. Guilloteau, A.R. Crossman, B.Bioulac, J.M. Brotchie, and C.E. Gross, Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine-lesioned macaque model of Parkinson's disease, J. Neurosci. 21 (2001), pp. 6853–6861.
  • P. Blandina, J. Goldfarb, B. Craddock-Royal, and J. Green, Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in the rat striaum, J. Phamacol. Exp. Ther. 251 (1989), pp. 803–809.
  • N. Bonhomme, P. Duerwaerdere, M. Moal, and U. Spampinato, Evidence for 5-ht4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat, Neuropharmacology 34 (1995),pp. 269–279.
  • V. Booth and C. Dehn, Physiologically-based modeling of sleep-wake regulatory networks, Math. Biosci. 250 (2014), pp. 54–68.
  • C. Dentresangle, M.L. Cavorison, M. Savasta, and V. Leviel, Increased extracellular da and normal evoked da release in the rat striatum after a partial lesion of the substantia nigra, Brain. Res. 893 (2001), pp. 178–185.
  • K. Eriksson, D. Stevens, and H. Haas, Serotonin excites tuberomammillary neurons by activation of na+/ca2+-exchange, Neuropharmacology 40 (2001), pp. 345–351.
  • J. Fearnley and A. Lees, Ageing and Parkinson's disease: substantia nigra regional selectivity, Brain A J. Neurol. 114 (1991), pp. 2283–2301.
  • R. Feldman, J. Meyer, and L. Quenzer, Principles of Neuropharmacology, Sinauer Associates, Inc., Sunderland, MA, 1997.
  • C. Flores-Clemente, M. Nicolás-Vázquez, E. Jimènez, and M. Hernàndez-Rodrìguez, Inhibition of astrocytic histamine n-methyltransferase as a possible target for the treatment of Alzheimer's disease, Biomolecules 11 (2021), p. 1408.
  • K. Fuxe, A.B. Dahlstrom, G. Jonsson, D. Marcellino, M. Guescini, M. Dam, P. Manger, and L.Agnati, The discovery of central monoamine neurons gave volume transmission to the wired brain, Prog. Neurobiol. 90 (2010), pp. 82–100.
  • A. Girasole and A. Nelson, Probing striatal microcircuitry to understand the functional role of cholinergic interneurons, Mov. Disord. 30 (2015), pp. 1306–1318.
  • A. Granger, M. Wallace, and B. Sabatini, Multi-transmitter neurons in the mammalian central nervous system, Curr. Opin. Neurobiol. 45 (2017), pp. 85–91.
  • P. Hashemi, Personal communication.
  • T. Hnasko and R. Edwards, Neurotransmitter corelease: mechanism and physiological role, Annu. Rev. Physiol. 74 (2012), pp. 225–243.
  • Z. Huszti, K. Magyar, and M. Kalman, Contribution of glial cells to histamine inactivation, Agents Actions 30 (1990), pp. 237–239.
  • S. Kish, K. Shannak, and O. Hornykiewicz, Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications, N. Engl. J. Med. 318 (1988), pp. 876–880.
  • C. Lacey, J. Boyes, O. Gerlach, L. Chen, P. Magill, and J. Bolam, Gabab receptors at glutamatergic synapses in the rat striatum, Neuroscience 136 (2005), pp. 1083–1095.
  • K. Laitinen, L. Tuomisto, and J. Laitinen, Endogenous serotonin modulates histamine release in the rat hypothalamus as measured by in vivo microdialysis, Eur. J. Pharmacol. 285 (1995),pp. 159–164.
  • J.M. Monti, The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness, Sleep Med. Rev. 14 (2010), pp. 307–317.
  • R. Oishi, Y. Itoh, and K. Saeki, Inhibition of histamine turnover by 8-oh-dpat, buspirone and 5-hydroxytryptophan in the mouse and rat brain, Arch. Pharma 345 (1992), pp. 495–499.
  • B. Pakkenberg, A. Moller, H. Gundersen, A. Dam, and H. Pakkenberg, The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method, J. Neurol. Neurosurg. Psychiatry 54 (1991),pp. 30–33.
  • R. Phillips, I. Rosner, A. Gittis, and J. Rubin, The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs, Elife 9 (2020), p. e55592.
  • H. Prast, M. Tran, H. Fisher, M. Kraus, C. Lamberti, K. Grass, and A. Philippu, Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H3 histamine receptors, Arch. Pharma 360 (1999), pp. 558–564.
  • H. Prast, M. Tran, C. Lamberti, H. Fischer, M. Kraus, K. Grass, and A. Philippu, Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H1 and H2 histamine receptors, Arch. Pharma 360 (1999), pp. 552–557.
  • M. Reed, J. Best, and H.F. Nijhout, Passive and active stabilization of dopamine in the striatum, Biosci. Hypotheses. 2 (2009), pp. 240–244.
  • P. Riederer and S. Wuketich, Time course of nigrostriatal degeneration in Parkinson's disease, J. Neural. Transm. 38 (1976), pp. 277–301.
  • B. Roberts, E. Lopes, and S. Cragg, Axonal modulation of striatal dopamine release by local gaba signalling, Cells 10 (2021), p. 709.
  • S. Samaryake, A. Abdalla, R. Robke, H.F. Nijhout, M. Reed, J. Best, and P. Hashemi, A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus, J. Neurochem. 138 (2016), pp. 372–383.
  • D. Scherman, C. Desnos, F. Darchen, P. Pollak, F. Javoy-Agid, and Y. Agid, Striatal dopamine deficiency in Parkinson's disease: role of aging striatal dopamine deficiency in Parkinson's disease: role of aging striatal dopamine deficiency in Parkinson's disease: role of aging, Ann. Neurol. 26 (1989), p. 551–557.
  • E. Svensson, J. Apergis-Schoute, G. Burnstock, M. Nusbaum, D. Parker, and H. Schioth, General principles of neuronal co-transmission: insights from multiple model systems, Front. Neural Circuits12 (2019), p. 117.
  • T. Yoshikawa, T. Nakamura, and K. Yanai, Histamine n-methyltransferase in the brain, Int. J. Mol. Sci. 20 (2019), p. 737.
  • M. Zygmond, E. Abercrombie, T. Berger, A. Grace, and E. Stricker, Compensation after lesions of central dopaminergic neurons: some clinical and basic implications, Trends Neurosci. 13 (1990), pp. 290–296.