266
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling and analysis of periodic impulsive releases of the Nilaparvata lugens infected with wStri-Wolbachia

, &
Article: 2287077 | Received 13 Jun 2023, Accepted 17 Nov 2023, Published online: 29 Nov 2023

References

  • S Savary, F Horgan, L Willocquet, et al. A review of principles for sustainable pest management in rice. Crop Prot. 2012;32:54–63. doi:10.1016/j.cropro.2011.10.012
  • HJ Huang, YY Bao, SH Lao, et al. Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Sci Rep. 2015;5(1):1–14.
  • Z Liu, Z Han, Y Wang. Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Manag Sci. 2003;59(12):1355–1359. doi:10.1002/ps.v59:12
  • AA Hoffmann, BL Montgomery, J Popovici, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476(7361):454–457. doi: 10.1038/nature10356
  • X Zheng, D Zhang, Y Li, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature. 2019;572(7767):56–61. doi:10.1038/s41586-019-1407-9
  • JT Gong, Y Li, TP Li, et al. Stable introduction of plant-virus-inhibiting wolbachia into planthoppers for rice protection. Curr Biol. 2020;30(24):4837–4845.e5. doi:10.1016/j.cub.2020.09.033
  • H Zhang, KJ Zhang, XY Hong. Population dynamics of noncytoplasmic incompatibility-inducing Wolbachia in Nilaparvata lugens and its effects on host adult life span and female fitness. Environ Entomol. 2010;39(6):1801–1809. doi:10.1603/EN10051
  • JF Ju, XL Bing, DS Zhao, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2020;14(3):676–687. doi:10.1038/s41396-019-0559-9
  • H Noda, Y Koizumi, Q Zhang, et al. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Molec. 2001;31(6-7):727–737. doi:10.1016/S0965-1748(00)00180-6
  • Z Liu, T Zhou. Wolbachia spreading dynamics in Nilaparvata lugens with two strains. Nonlinear Anal RWA. 2021;62:103361. doi:10.1016/j.nonrwa.2021.103361
  • L Cai, S Ai, J Li. Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J Appl Math. 2014;74(6):1786–1809. doi: 10.1137/13094102X
  • L Cai, S Ai, G Fan. Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Math Biosci Eng. 2018;15(5):1181–1202. doi: 10.3934/mbe.2018054
  • J Li. New revised simple models for interactive wild and sterile mosquito populations and their dynamics. J Biol Dynam. 2016;2016:1–18.
  • KR Fister, ML Mccarthy, SF Oppenheimer, et al. Optimal control of insects through sterile insect release and habitat modification. Math Biosci. 244(2):201–212. doi:10.1016/j.mbs.2013.05.008
  • J Li, ZL Yuan. Modelling releases of sterile mosquitoes with different strategies. J Biol Dynam. 2013;9(1):1–14. doi:10.1080/17513758.2014.977971
  • M Huang, X Song, J Li. Modelling and analysis of impulsive releases of sterile mosquitoes. J Biol Dynam. 2017;11(1):147–171. doi:10.1080/17513758.2016.1254286
  • J Yu, J Li. Global asymptotic stability in an interactive wild and sterile mosquito model. J Differ Equations. 2020;269(7):6193–6215. doi:10.1016/j.jde.2020.04.036
  • B Zheng, J Yu, J Li. Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J Appl Math. 2021;81(2):718–740. doi:10.1137/20M1368367
  • J Li, S Ai. Impulsive releases of sterile mosquitoes and interactive dynamics with time delay. J Biol Dynam. 2020;14(1):289–307. doi:10.1080/17513758.2020.1748239
  • Z Zhu, B Zheng, Y Shi, et al. Stability and periodicity in a mosquito population suppression model composed of two sub-models. Nonlinear Dynam. 2022;107(1):1383–1395. doi:10.1007/s11071-021-07063-1
  • L Hu, M Huang, M Tang, et al. Wolbachia spread dynamics in multi-regimes of environmental conditions. J Theor Biol. 2019;462:247–258. doi:10.1016/j.jtbi.2018.11.009
  • L Hu, M Huang, M Tang, et al. Wolbachia spread dynamics in stochastic environments. Theor Popul Biol. 2015;106:32–44. doi:10.1016/j.tpb.2015.09.003
  • R Taghikhani, O Sharomi, AB Gumel. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Math Biosci. 2020;328:108426. doi:10.1016/j.mbs.2020.108426
  • Z Qu, L Xue, JM Hyman. Modeling the transmission of Wolbachia in mosquitoes for controlling mosquito-borne diseases. SIAM J Appl Math. 2018;78(2):826–852. doi:10.1137/17M1130800
  • Z Liu, T Chen, T Zhou. Analysis of impulse release of Wolbachia to control Nilaparvata lugens. Commun Nonlinear Sci. 2023;116:106842. doi:10.1016/j.cnsns.2022.106842
  • HJ Barclay. Pest population stability under sterile releases. Res Popul Ecol. 1982;24(2):405–416. doi:10.1007/BF02515585
  • J Yu, B Zheng. Modeling Wolbachia infection in mosquito population via discrete dynamical models. J Differ Equ Appl. 2019;25(11):1549–1567. doi:10.1080/10236198.2019.1669578
  • V Lakshmikantham, PS Simeonov. Theory of impulsive differential equations. Singapore: World Scientific; 1989.
  • J Yu. Modeling mosquito population suppression based on delay differential equations. SIAM J Appl Math. 2018;78(6):3168–3187. doi:10.1137/18M1204917