921
Views
0
CrossRef citations to date
0
Altmetric
Special Issue in Memory of Abdul-Aziz Yakubu

A stochastic multi-host model for West Nile virus transmission

&
Article: 2293780 | Received 19 Apr 2023, Accepted 30 Nov 2023, Published online: 28 Dec 2023

References

  • Centers for Disease Control and Prevention. West Nile virus. Available from: https://www.cdc.gov/westnile/index.html.
  • BF Allan, RB Langerhans, WA Ryberg, et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia. 2009;158:699–708. doi: 10.1007/s00442-008-1169-9
  • VO Ezenwa, MS Godsey, RJ King, et al. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc R Soc B Biol Sci. 2006;273:109–117. doi: 10.1098/rspb.2005.3284
  • AM Kilpatrick, SL LaDeau, PP Marra. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk. 2007;124:1121–1136. doi: 10.1093/auk/124.4.1121
  • N Komar, S Langevin, S Hinten, et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infect Dis. 2003;9:311–322. doi: 10.3201/eid0903.020628
  • E Miller, A Huppert. The effects of host diversity on vector-borne disease: the conditions under which diversity will amplify or dilute the disease risk. PLoS One. 2013;8:e80279. doi: 10.1371/journal.pone.0080279
  • GL Hamer, UD Kitron, TL Goldberg, et al. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg. 2009;80:268–278. doi: 10.4269/ajtmh.2009.80.268
  • JE Simpson, PJ Hurtado, J Medlock, et al. Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system. Proc R Soc B Biol Sci. 2012;279:925–933. doi: 10.1098/rspb.2011.1282
  • A Marm Kilpatrick, P Daszak, MJ Jones, et al. Host heterogeneity dominates West Nile virus transmission. Proc R Soc B Biol Sci. 2006;273:2327–2333. doi: 10.1098/rspb.2006.3575
  • A Abdelrazec, S Lenhart, H Zhu. Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. J Math Biol. 2014;68:1553–1582. doi: 10.1007/s00285-013-0677-3
  • TA Beebe, SL Robertson. A two-species stage-structured model for West Nile virus transmission. Lett. Biomath.. 2017;4:112–132. doi: 10.30707/LiB
  • LD Bergsman, JM Hyman, CA Manore. A mathematical model for the spread of West Nile virus in migratory and resident birds. Math Biosci Eng. 2016;13:401–424. doi: 10.3934/mbe.2015009
  • SL Robertson, KA Caillouët. A host stage-structured model of enzootic West Nile virus transmission to explore the effect of avian stage-dependent exposure to vectors. J Theor Biol. 2016;399:33–42. doi: 10.1016/j.jtbi.2016.03.031
  • MJ Wonham, T de Camino-Beck, MA Lewis. An epidemiological model for West Nile virus: invasion analysis and control applications. Proc R Soc London Ser B Biol Sci. 2004;271:501–507. doi: 10.1098/rspb.2003.2608
  • CC Lord, JF Day. Simulation studies of St. Louis encephalitis and West Nile viruses: the impact of bird mortality. Vector Borne Zoonotic Dis. 2001;1:317–329. doi: 10.1089/15303660160025930
  • G Marini, R Rosá, A Pugliese, et al. Exploring vector-borne infection ecology in multi-host communities: a case study of West Nile virus. J Theor Biol. 2017;415:58–69. doi: 10.1016/j.jtbi.2016.12.009
  • LJ Allen. A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect Dis Model. 2017;2:128–142.
  • AL Lloyd, J Zhang, AM Root. Stochasticity and heterogeneity in host–vector models. J R Soc Interface. 2007;4:851–863. doi: 10.1098/rsif.2007.1064
  • A Abdullahi, S Shohaimi, A Kilicman, et al. Stochastic SIS modelling: coinfection of two pathogens in two-host communities. Entropy. 2020;22:54. doi: 10.3390/e22010054
  • LJ Allen, GE Lahodny Jr. Extinction thresholds in deterministic and stochastic epidemic models. J Biol Dyn. 2012;6:590–611. doi: 10.1080/17513758.2012.665502
  • F Bai, LJ Allen. Probability of a major infection in a stochastic within-host model with multiple stages. Appl Math Lett. 2019;87:1–6. doi: 10.1016/j.aml.2018.07.022
  • S Maity, PS Mandal. A comparison of deterministic and stochastic plant-vector-virus models based on probability of disease extinction and outbreak. Bull Math Biol. 2022;84:41. doi: 10.1007/s11538-022-01001-x
  • M Maliyoni. Probability of disease extinction or outbreak in a stochastic epidemic model for West Nile virus dynamics in birds. Acta Biotheor. 2021;69:91–116. doi: 10.1007/s10441-020-09391-y
  • M Maliyoni, F Chirove, HD Gaff, et al. A stochastic tick-borne disease model: exploring the probability of pathogen persistence. Bull Math Biol. 2017;79:1999–2021. doi: 10.1007/s11538-017-0317-y
  • RW Mbogo, LS Luboobi, JW Odhiambo. A stochastic model for malaria transmission dynamics. J Appl Math. 2018;2018:1–13. doi: 10.1155/2018/2439520
  • JA Mwasunda, MA Stephano, JI Irunde. Pasteurellosis transmission dynamics in free range chicken and wild birds: a deterministic and stochastic modeling approach. Inform Med Unlocked. 2022;34:101108. doi: 10.1016/j.imu.2022.101108
  • KF Nipa, SRJ Jang, LJ Allen. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population. Math Biosci. 2021;331:108516. doi: 10.1016/j.mbs.2020.108516
  • X Wang, CM Saad-Roy, P van den Driessche. Stochastic model of bovine babesiosis with juvenile and adult cattle. Bull Math Biol. 2020;82:1–17. doi: 10.1007/s11538-019-00680-3
  • M Zevika, E Soewono. Deterministic and stochastic CTMC models from Zika disease transmission. AIP Conf Proc. 2018;1937:020023–doi: 10.1063/1.5026095
  • LJ Allen, P van den Driessche. Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-time infectious disease models. Math Biosci. 2013;243:99–108. doi: 10.1016/j.mbs.2013.02.006
  • CE Jones, LP Lounibos, PP Marra, et al. Rainfall influences survival of Culex pipiens (Diptera: Culicidae) in a residential neighborhood in the Mid-Atlantic United States. J Med Entomol. 2012;49:467–473. doi: 10.1603/ME11191
  • DB Botkin, RS Miller. Mortality rates and survival of birds. Am Nat. 1974;108:181–192. doi: 10.1086/282898
  • O Diekmann, JAP Heesterbeek, JA Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28:365–382. doi: 10.1007/BF00178324
  • J van den Driessche, P Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180:29–48. doi: 10.1016/S0025-5564(02)00108-6
  • LJ Allen. An introduction to stochastic processes with applications to biology. Boca Raton (FL): CRC Press; 2010.
  • GE Lahodny Jr, LJ Allen. Probability of a disease outbreak in stochastic multipatch epidemic models. Bull Math Biol. 2013;75:1157–1180. doi: 10.1007/s11538-013-9848-z
  • JM Deichmeister, A Telang. Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables. J Vector Ecol. 2011;36:75–85. doi: 10.1111/j.1948-7134.2011.00143.x
  • VO Ezenwa, LE Milheim, MF Coffey, et al. Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector Borne Zoonotic Dis. 2007;7:173–180. doi: 10.1089/vbz.2006.0584
  • C Martínez-Núñez, R Martínez-Prentice, V García-Navas. Land-use diversity predicts regional bird taxonomic and functional richness worldwide. Nat Commun. 2023;14:1320. doi: 10.1038/s41467-023-37027-5
  • MF Sallam, SR Michaels, C Riegel, et al. Spatio-temporal distribution of vector-host contact (VHC) ratios and ecological niche modeling of the West Nile virus mosquito vector, Culex quinquefasciatus, in the city of New Orleans, LA, USA. Int J Environ Res Public Health. 2017;14:892. doi: 10.3390/ijerph14080892
  • AM Kilpatrick, LD Kramer, MJ Jones, et al. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006;4:e82. doi: 10.1371/journal.pbio.0040082