863
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling and analysis of a multilayer solid tumour with cell physiological age and resource limitations

, ORCID Icon, &
Article: 2295492 | Received 09 May 2022, Accepted 08 Dec 2023, Published online: 22 Dec 2023

References

  • G Benjamin. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Proc R Soc Lond. 1825;115:513–583.
  • AK Laird. Dynamics of tumor growth. Br J Cancer. 1964;18:490–502. doi: 10.1038/bjc.1964.55
  • L Norton, R Simon, HD Brereton, et al. Predicting the course of Gompertzian growth. Nature. 1976;264:542–545. doi: 10.1038/264542a0
  • CL Frenzen, JD Murray. A cell kinetics justification for Gompertz equation. SIAM J Appl Math. 1986;46:614–629. doi: 10.1137/0146042
  • F Kozusko, Z Bajzer. Combining Gompertzian growth and cell population dynamics. Math Biosci. 2003;185:153–167. doi: 10.1016/S0025-5564(03)00094-4
  • M Marusic, Z Bajzer, S Vuk-Pavlovic, et al. Tumor growth in vivo and as multicellular spheroids compared by mathematical models. Bull Math Biol. 1994;56:617–631.
  • M Marusic, S Vuk-Pavlovic. Prediction power of mathematical models for tumor growth. J Biol Syst. 1993;1:69–78. doi: 10.1142/S0218339093000069
  • BP Ayati, GF Webb, RA Anderson. Computational methods and results for structured multiscale models of tumor invasion. SIAM Multiscale Model Simul. 2006;5:1–20. doi: 10.1137/050629215
  • P Bi, S Ruan, X Zhang. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays. Chaos. 2014;24:023–101. doi: 10.1063/1.4870363
  • JA Florian , JL Eiseman, RS Parker. Accounting for quiescent cells in tumour growth and cancer treatment. IEE Proc Syst Biol. 2005;152:185–192. doi: 10.1049/ip-syb:20050041
  • M Gyllenberg, GF Webb. Quiescence as an explanation of Gompertzian tumor growth. Growth Dev Aging. 1989;53:25–33.
  • CJ Thalhauser, T Sankar, MC Preul, et al. Explicit separation of growth and motility in a new tumor cord model. Bullet Math Biol. 2009;71:585–601. doi: 10.1007/s11538-008-9372-8
  • D Zhu, S Ruan, D Liu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Math Biosci Eng. 2012;9:347–368. doi: 10.3934/mbe.2012.9.347
  • SN Busenberg, KP Hadeler. Demography and epidemics. Math Biosci. 1990;101:63–74. doi: 10.1016/0025-5564(90)90102-5
  • H Inaba. Age-structured population dynamics in demograhpy and epidemiology. Singapore: Springer; 2017.
  • H Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete Contin Dyn Syst Ser B. 2006;6:69–96.
  • H Inaba. Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. J Math Biol. 2007;54:101–146. doi: 10.1007/s00285-006-0033-y
  • RYM Massoukou, A Traore. An age-structured model for the transmission dynamics of hepatitis B: asymptotic analysis. Turk J Math. 2017;41:436–460. doi: 10.3906/mat-1412-50
  • CJ Browne, SS Pilyugin. Global analysis of age-structured within-host virus model. Discrete Contin Dyn Syst Ser B. 2013;18:1999–2017.
  • D Xiao, S Ruan, Y Yang. Global stability of an age-structured virus dynamics model with Beddington–DeAngelis infection function. Math Biosci Eng. 2015;12:859–877. doi: 10.3934/mbe
  • J Wang, J Lang, X Zou. Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission. Nonlinear Anal RealWorld Appl. 2017;34:75–96. doi: 10.1016/j.nonrwa.2016.08.001
  • J Dyson, R Villella-Bressan, GF Webb. Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math Biosci. 2002;177-178:73–83. doi: 10.1016/S0025-5564(01)00097-9
  • J Carlsson. A proliferation gradient in three-dimensional colonies of cultured human glioma cells. Int J Cancer. 1977;20:129–136. doi: 10.1002/ijc.v20:1
  • AD Congar, MC Ziskin. Growth of mammalian multicellular tumour spheroids. Cancer Res. 1983;43:558–560.
  • J Folkman, M Hochberg. Self-regulation of growth in three dimensions. Exp Med. 1973;138:745–753. doi: 10.1084/jem.138.4.745
  • JP Ward, JR King. Mathematical modelling of avascular-tumour growth. IMA J Math Appl Med Biol. 1997;14:39–69. doi: 10.1093/imammb/14.1.39
  • EO Alzahrani, A Asiri, MM El-Dessoky, et al. Quiescence as an explanation of Gompertzian tumor growth revisited. Math Biosci. 2014;254:76–82. doi: 10.1016/j.mbs.2014.06.009
  • EO Alzahrani, Y Kuang. Nutrient limitations as an explanation of Gompertzian tumor growth. Discrete Contin Dyn Syst Ser B. 2016;21:357–372. doi: 10.3934/dcdsb
  • HE Skipper. Kinetics of mammary tumor cell growth and implications for therapy. Cancer. 1971;28:1479–1499. doi: 10.1002/(ISSN)1097-0142
  • Z Liu, J Chen, J Pang, et al. Modeling and analysis of a nonlinear age-structured model for tumor cell populations with quiescence. J Nonlinear Sci. 2018;28:1763–1791. doi: 10.1007/s00332-018-9463-0
  • Z Liu, C Guo, H Li, et al. Analysis of a nonlinear age-structured tumor cell population model. Nonlinear Dyn. 2019;98:283–300. doi: 10.1007/s11071-019-05190-4
  • Z Liu, C Guo, J Yang, et al. Steady states analysis of a nonlinear age-structured tumor cell population model with quiescence and bidirectional transition. Acta Appl Math. 2020;169:455–474. doi: 10.1007/s10440-019-00306-9
  • O Arino, E Sanchez, GF Webb. Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence. J Math Anal Appl. 1997;215:499–513. doi: 10.1006/jmaa.1997.5654
  • P Gabriel, SP Garbett, V Quaranta, et al. The contribution of age structure to cell population responses to targeted therapeutics. J Theor Biol. 2012;311:19–27. doi: 10.1016/j.jtbi.2012.07.001
  • FB Brikci, J Clairambault, B Ribba, et al. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J Math Biol. 2008;57:91–110. doi: 10.1007/s00285-007-0147-x
  • DR Tyson, SP Garbett, PL Frick, et al. Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nat Methods. 2012;9:923–928. doi: 10.1038/nmeth.2138
  • H Inaba. A semigroup approach to the strong ergodic theorem of the multi-state stable population process. Math Popul Stud. 1988;1:49–77. doi: 10.1080/08898488809525260
  • ME Gurtin, RC Maccamy. Non-linear age-dependent population dynamics. Arch Ration Arch Ration Mech Anal. 1974;54:281–300. doi: 10.1007/BF00250793
  • F Billy, J Clairambaultt, O Fercoq, et al. Synchronisation and control of proliferation in cycling cell population models with age structure. Math Comput Simul. 2014;96:66–94. doi: 10.1016/j.matcom.2012.03.005
  • B Basse, BC Baguley, ES Marshall, et al. A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J Math Biol. 2003;47:295–312. doi: 10.1007/s00285-003-0203-0
  • L Spinelli, A Torricelli, P Ubezio, et al. Modelling the balance between quiescence and cell death in normal and tumour cell populations. Math Biosci. 2006;202:349–370. doi: 10.1016/j.mbs.2006.03.016