473
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unusual response of O3 and CH4 to NO2 emissions reduction in Japan during the COVID-19 pandemic

ORCID Icon &
Article: 2297844 | Received 08 Sep 2023, Accepted 15 Dec 2023, Published online: 26 Dec 2023

References

  • Akimoto, Hajime, and Hiroshi Tanimoto. 2022. “Rethinking of the Adverse Effects of NOx-Control on the Reduction of Methane and Tropospheric Ozone – Challenges Toward a Denitrified Society.” Atmospheric Environment 277: 119033. doi:10.1016/j.atmosenv.2022.119033.
  • Barré, Jérôme, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent Henri Peuch, Laurence Rouil, Richard Engelen, et al. 2021. “Estimating Lockdown-Induced European NO2changes Using Satellite and Surface Observations and Air Quality Models.” Atmospheric Chemistry and Physics 21 (9): 7373–7394. doi:10.5194/acp-21-7373-2021.
  • Bauwens, M., S. Compernolle, T. Stavrakou, J.-F. Müller, J. van Gent, H. Eskes, P. F. Levelt, et al. 2020. “Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations.” Geophysical Research Letters 47 (11), John Wiley & Sons, Ltd: e2020GL087978. doi:10.1029/2020GL087978.
  • Cao, Mingkui, Stewart Marshall, and Keith Gregson. 1996. “Global Carbon Exchange and Methane Emissions from Natural Wetlands: Application of a Process-Based Model.” Journal of Geophysical Research: Atmospheres 101 (D9), John Wiley & Sons, Ltd: 14399–14414. doi:10.1029/96JD00219.
  • Cooper, Matthew J, Randall V Martin, Melanie S Hammer, Pieternel F Levelt, Pepijn Veefkind, Lok N Lamsal, Nickolay A Krotkov, Jeffrey R Brook, and Chris A McLinden. 2022. “Global Fine-Scale Changes in Ambient NO2 During COVID-19 Lockdowns.” Nature 601 (7893): 380–387. doi:10.1038/s41586-021-04229-0.
  • Damiani, A., H. Irie, D. A. Belikov, S. Kaizuka, H. M. S. Hoque, and R. R. Cordero. 2022. “Peculiar COVID-19 Effects in the Greater Tokyo Area Revealed by Spatiotemporal Variabilities of Tropospheric Gases and Light-Absorbing Aerosols.” Atmospheric Chemistry and Physics 22 (18): 12705–12726. doi:10.5194/acp-22-12705-2022.
  • de Palma, André, Shaghayegh Vosough, and Feixiong Liao. 2022. “An Overview of Effects of COVID-19 on Mobility and Lifestyle: 18 Months Since the Outbreak.” Transportation Research Part A: Policy and Practice 159: 372–397. doi:10.1016/j.tra.2022.03.024.
  • Duncan, Bryan N, Yasuko Yoshida, Jennifer R Olson, Sanford Sillman, Randall V Martin, Lok Lamsal, Yongtao Hu, et al. 2010. “Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation.” Atmospheric Environment 44 (18): 2213–2223. doi:10.1016/j.atmosenv.2010.03.010.
  • Feng, L., P. I. Palmer, R. J. Parker, M. F. Lunt, and H. Bösch. 2023. “Methane Emissions are Predominantly Responsible for Record-Breaking Atmospheric Methane Growth Rates in 2020 and 2021.” Atmospheric Chemistry and Physics 23 (8): 4863–4880. doi:10.5194/acp-23-4863-2023.
  • Grange, Stuart K., James D. Lee, Will S. Drysdale, Alastair C. Lewis, Christoph Hueglin, Lukas Emmenegger, and David C. Carslaw. 2021. “COVID-19 Lockdowns Highlight a Risk of Increasing Ozone Pollution in European Urban Areas.” Atmospheric Chemistry and Physics 21 (5): 4169–4185. doi:10.5194/acp-21-4169-2021.
  • Hamra, G. B., Laden Francine, Cohen Aaron J, Raaschou-Nielsen Ole, Brauer Michael, and Loomis Dana. 2015. “Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis.” Environmental Health Perspectives 123: 11. Environmental Health Perspectives: 1107–1112. doi:10.1289/ehp.1408882.
  • Irie, Hitoshi, Daichi Yonekawa, Alessandro Damiani, Hossain Mohammed Syedul Hoque, Kengo Sudo, and Syuichi Itahashi. 2021. “Continuous Multi-Component MAX-DOAS Observations for the Planetary Boundary Layer Ozone Variation Analysis at Chiba and Tsukuba, Japan, from 2013 to 2019.” Progress in Earth and Planetary Science 8 (1): 31. doi:10.1186/s40645-021-00424-9.
  • Itahashi, Syuichi, Yuki Yamamura, Zhe Wang, and Itsushi Uno. 2022. “Returning Long-Range PM2.5 Transport Into the Leeward of East Asia in 2021 After Chinese Economic Recovery from the COVID-19 Pandemic.” Scientific Reports 12 (1): 5539. doi:10.1038/s41598-022-09388-2.
  • Ito, Akihiko. 2021a. “Output Data of Greenhouse Gas Budget and Carbon Cycle Simulated by the VISIT Terrestrial Ecosystem Model, Ver.2021.1_CH4Wetl_Cao.” NIES, doi:10.17595/20210521.001.
  • Ito, Akihiko. 2021b. “Output Data of Greenhouse Gas Budget and Carbon Cycle Simulated by the VISIT Terrestrial Ecosystem Model, Ver.2021.1_CH4Wetl_WH.” NIES, doi:10.17595/20210521.001.
  • Ito, Akihiko, and Kazuhito Ichii. 2021. “Terrestrial Ecosystem Model Studies and Their Contributions to AsiaFlux.” Journal of Agricultural Meteorology 77 (1): 81–95. doi:10.2480/agrmet.D-20-00024.
  • Ito, Akihiko, Yasunori Tohjima, Takuya Saito, Taku Umezawa, Tomohiro Hajima, Ryuichi Hirata, Makoto Saito, and Yukio Terao. 2019. “Methane Budget of East Asia, 1990–2015: A Bottom-up Evaluation.” Science of The Total Environment 676: 40–52. doi:10.1016/j.scitotenv.2019.04.263.
  • Jin, Xiaomeng, Arlene Fiore, K. Folkert Boersma, Isabelle De Smedt, and Lukas Valin. 2020. “Inferring Changes in Summertime Surface Ozone–NOx–VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations.” Environmental Science & Technology 54 (11): 6518–6529. doi:10.1021/acs.est.9b07785.
  • Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. “LightGBM: A Highly Efficient Gradient Boosting Decision Tree.” In Advances in Neural Information Processing Systems, Vol. 30, edited by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.
  • Liu, Yiming, Tao Wang, Trissevgeni Stavrakou, Nellie Elguindi, Thierno Doumbia, Claire Granier, Idir Bouarar, Benjamin Gaubert, and Guy P Brasseur. 2021. “Diverse Response of Surface Ozone to COVID-19 Lockdown in China.” Science of The Total Environment 789: 147739. doi:10.1016/j.scitotenv.2021.147739.
  • Martin, Randall V, Arlene M Fiore, and Aaron Van Donkelaar. 2004. “Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions.” Geophysical Research Letters 31 (6), John Wiley & Sons, Ltd. doi:10.1029/2004GL019416.
  • Miyazaki, Kazuyuki, and Kevin Bowman. 2023. “Predictability of Fossil Fuel CO2 from Air Quality Emissions.” Nature Communications 14 (1): 1604. doi:10.1038/s41467-023-37264-8.
  • Miyazaki, Kazuyuki, Kevin Bowman, Takashi Sekiya, Masayuki Takigawa, Jessica L Neu, Kengo Sudo, Greg Osterman, and Henk Eskes. 2021. “Global Tropospheric Ozone Responses to Reduced NOx Emissions Linked to the COVID-19 Worldwide Lockdowns.” Science Advances 7: 24. eabf7460. doi:10.1126/sciadv.abf7460.
  • Ordóñez, Carlos, Jose M Garrido-Perez, and Ricardo García-Herrera. 2020. “Early Spring Near-Surface Ozone in Europe During the COVID-19 Shutdown: Meteorological Effects Outweigh Emission Changes.” Science of The Total Environment 747: 141322. doi:10.1016/j.scitotenv.2020.141322.
  • Peng, Shushi, Xin Lin, Rona L Thompson, Yi Xi, Gang Liu, Didier Hauglustaine, Xin Lan, et al. 2022. “Wetland Emission and Atmospheric Sink Changes Explain Methane Growth in 2020.” Nature 612 (7940): 477–482. doi:10.1038/s41586-022-05447-w.
  • Phan, Anh, and Hiromichi Fukui. 2023. “Quantifying the Impacts of the COVID-19 Pandemic Lockdown and the Armed Conflict with Russia on Sentinel 5P TROPOMI NO2 Changes in Ukraine.” Big Earth Data 0: 0. Taylor & Francis: 1–24. doi:10.1080/20964471.2023.2265105.
  • Qu, Zhen, Daniel J Jacob, Yuzhong Zhang, Lu Shen, Daniel J Varon, Xiao Lu, Tia Scarpelli, Anthony Bloom, John Worden, and Robert J Parker. 2022. “Attribution of the 2020 Surge in Atmospheric Methane by Inverse Analysis of GOSAT Observations.” Environmental Research Letters 17: 9. IOP Publishing: 094003. doi:10.1088/1748-9326/ac8754.
  • Ren, J., F. Guo, and S. Xie. 2022. “Diagnosing Ozone–NO_x–VOC Sensitivity and Revealing Causes of Ozone in China Based on 2013–2021 Satellite Retrievals.” Atmospheric Chemistry and Physics 22 (22): 15035–15047. doi:10.5194/acp-22-15035-2022.
  • Schroeder, Jason R, James H Crawford, Alan Fried, James Walega, Andrew Weinheimer, Armin Wisthaler, Markus Müller, et al. 2017. “New Insights Into the Column CH2O/NO2 Ratio as an Indicator of Near-Surface Ozone Sensitivity.” Journal of Geophysical Research: Atmospheres 122: 16. John Wiley & Sons, Ltd: 8885–8907. doi:10.1002/2017JD026781.
  • Shi, Zongbo, Congbo Song, Bowen Liu, Gongda Lu, Jingsha Xu, Tuan Van Vu, Robert J.R. Elliott, Weijun Li, William J. Bloss, and Roy M. Harrison. 2021. “Abrupt but Smaller Than Expected Changes in Surface Air Quality Attributable to COVID-19 Lockdowns.” Science Advances 7: 3. doi:10.1126/sciadv.abd6696.
  • Souri, A. H., M. S. Johnson, G. M. Wolfe, J. H. Crawford, A. Fried, A. Wisthaler, W. H. Brune, et al. 2023. “Characterization of Errors in Satellite-Based HCHO/NO 2 Tropospheric Column Ratios with Respect to Chemistry, Column-to-PBL Translation, Spatial Representation, and Retrieval Uncertainties.” Atmospheric Chemistry and Physics 23 (3): 1963–1986. doi:10.5194/acp-23-1963-2023.
  • Stevenson, D. S., R. G. Derwent, O. Wild, and W. J. Collins. 2022. “COVID-19 Lockdown Emission Reductions Have the Potential to Explain Over Half of the Coincident Increase in Global Atmospheric Methane.” Atmospheric Chemistry and Physics 22 (21): 14243–14252. doi:10.5194/acp-22-14243-2022.
  • Tani, Akira, and Tomoki Mochizuki. 2021. “Review: Exchanges of Volatile Organic Compounds Between Terrestrial Ecosystems and the Atmosphere.” Journal of Agricultural Meteorology 77 (1): 66–80. doi:10.2480/agrmet.D-20-00025.
  • Turner, Alexander J, Christian Frankenberg, and Eric A Kort. 2019. “Interpreting Contemporary Trends in Atmospheric Methane.” Proceedings of the National Academy of Sciences 116: 8. doi:10.1073/pnas.1814297116.
  • Walter, Bernadette P, and Martin Heimann. 2000. “A Process-Based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to Five Wetland Sites, Sensitivity to Model Parameters, and Climate.” Global Biogeochemical Cycles 14: 3. John Wiley & Sons, Ltd: 745–765. doi:10.1029/1999GB001204.
  • Wang, Chi, Qingyun Wu, Markus Weimer, and Erkang (Eric) Zhu. 2021. “FLAML: A Fast and Lightweight AutoML Library.” In Fourth Conference on Machine Learning and Systems (MLSys 2021). https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/.
  • Zhang, Zhen, Benjamin Poulter, Andrew F Feldman, Qing Ying, Philippe Ciais, Shushi Peng, and Xin Li. 2023. “Recent Intensification of Wetland Methane Feedback.” Nature Climate Change 13 (5): 430–433. doi:10.1038/s41558-023-01629-0.
  • Zoran, Maria A, Roxana S Savastru, Dan M Savastru, and Marina N Tautan. 2023. “Peculiar Weather Patterns Effects on Air Pollution and COVID-19 Spread in Tokyo Metropolis.” Environmental Research 228: 115907. doi:10.1016/j.envres.2023.115907.