599
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An efficient and accurate deep learning method for tree species classification that integrates depthwise separable convolution and dilated convolution using hyperspectral data

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Article: 2307999 | Received 09 Oct 2023, Accepted 16 Jan 2024, Published online: 23 Jan 2024

References

  • Abdi, H., and L. J. Williams. 2010. “Principal Component Analysis.” Wiley Interdisciplinary Reviews: Computational Statistics 2 (4): 433–459. https://doi.org/10.1002/wics.101.
  • Asner, G. P. 1998. “Biophysical and Biochemical Sources of Variability in Canopy Reflectance.” Remote Sensing of Environment 64 (3): 234–253. https://doi.org/10.1016/S0034-4257(98)00014-5.
  • Asner, G. P., S. L. Ustin, P. A. Townsend, R. E. Martin, and K. D. Chadwick. 2015. “Forest Biophysical and Biochemical Properties from Hyperspectral and LiDAR Remote Sensing.” In Book Forest Biophysical and Biochemical Properties from Hyperspectral and LiDAR Remote Sensing, 429–448.
  • Bai, L., Y. Zhao, and X. Huang. 2018. “A CNN Accelerator on FPGA Using Depthwise Separable Convolution.” IEEE Transactions on Circuits and Systems II: Express Briefs 65 (10): 1415–1419. https://doi.org/10.1109/TCSII.2018.2865896.
  • Banskota, A., R. H. Wynne, and N. Kayastha. 2011. “Improving Within-genus Tree Species Discrimination Using the Discrete Wavelet Transform Applied to Airborne Hyperspectral Data.” International Journal of Remote Sensing 32 (13): 3551–3563. https://doi.org/10.1080/01431161003698302.
  • Boonprong, S., C. X. Cao, W. Chen, and S. N. Bao. 2018. “Random Forest Variable Importance Spectral Indices Scheme for Burnt Forest Recovery Monitoring—Multilevel RF-VIMP.” Remote Sensing 10 (6): 807. https://doi.org/10.3390/rs10060807.
  • Cao, K. L., and X. L. Zhang. 2020. “An Improved Res-UNet Model for Tree Species Classification Using Airborne High-resolution Images.” Remote Sensing 12 (7): 1128. https://doi.org/10.3390/rs12071128.
  • Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. “Rapid Range Shifts of Species Associated with High Levels of Climate Warming.” Science 333 (6045): 1024–1026. https://doi.org/10.1126/science.1206432.
  • Chen, C. Y., L. H. Jing, H. Li, and Y. W. Tang. 2021. “A New Individual Tree Species Classification Method Based on the ResU-Net Model.” Forests 12 (9): 1202. https://doi.org/10.3390/f12091202.
  • Chollet, F. 2017. “Xception: Deep Learning with Depthwise Separable Convolutions.” 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July 21–26.
  • Clark, M. L., D. A. Roberts, and D. B. Clark. 2005. “Hyperspectral Discrimination of Tropical Rain Forest Tree Species at Leaf to Crown Scales.” Remote Sensing of Environment 96 (3–4): 375–398. https://doi.org/10.1016/j.rse.2005.03.009.
  • Cochrane, M. A. 2000. “Using Vegetation Reflectance Variability for Species Level Classification of Hyperspectral Data.” International Journal of Remote Sensing 21 (10): 2075–2087. https://doi.org/10.1080/01431160050021303.
  • Dalponte, M., L. Frizzera, and D. Gianelle. 2019. “Individual Tree Crown Delineation and Tree Species Classification with Hyperspectral and LiDAR Data.” PeerJ 6:e6227. https://doi.org/10.7717/peerj.6227
  • Dyrmann, M., A. K. Mortensen, H. S. Midtiby, and R. N. Jørgensen. 2016. “Pixel-wise Classification of Weeds and Crops in Images by Using a Fully Convolutional Neural Network.” International Conference on Agricultural Engineering, Aarhus, Denmark, June 26–29.
  • Fawakherji, M., A. Youssef, D. D. Bloisi, A. Pretto, and D. Nardi. 2020. “Crop and Weed Classication Using Pixel-wise Segmentation on Ground and Aerial Images.” International Journal of Robotic Computing 2 (1): 39–57. https://doi.org/10.35708/RC1869-126258. https://hdl.handle.net/11573/1609132.
  • Feng, F., S. T. Wang, C. Y. Wang, and J. Zhang. 2019. “Learning Deep Hierarchical Spatial–Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN.” Sensors 19 (23): 5276. https://doi.org/10.3390/s19235276.
  • Ferreira, M. P., F. H. Wagner, L. E. Aragão, Y. E. Shimabukuro, and C. R. de Souza Filho. 2019. “Tree Species Classification in Tropical Forests Using Visible to Shortwave Infrared WorldView-3 Images and Texture Analysis.” ISPRS Journal of Photogrammetry and Remote Sensing 149:119–131. https://doi.org/10.1016/j.isprsjprs.2019.01.019.
  • Franklin, S. E., and O. S. Ahmed. 2018. “Deciduous Tree Species Classification Using Object-based Analysis and Machine Learning with Unmanned Aerial Vehicle Multispectral Data.” International Journal of Remote Sensing 39 (15–16): 5236–5245. https://doi.org/10.1080/01431161.2017.1363442.
  • Fricker, G. A., J. D. Ventura, J. A. Wolf, M. P. North, F. W. Davis, and J. Franklin. 2019. “A Convolutional Neural Network Classifier Identifies Tree Species in Mixed-conifer Forest from Hyperspectral Imagery.” Remote Sensing 11 (19): 2326. https://doi.org/10.3390/rs11192326.
  • Guo, X. F., H. Li, L. H. Jing, and P. Wang. 2022. “Individual Tree Species Classification Based on Convolutional Neural Networks and Multitemporal High-resolution Remote Sensing Images.” Sensors 22 (9). https://doi.org/10.3390/s22093157.
  • Hartling, S., V. Sagan, P. Sidike, M. Maimaitijiang, and J. Carron. 2019. “Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.” Sensors 19 (6): 1284. https://doi.org/10.3390/s19061284.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 27–30.
  • Hong, Q. Q., X. Y. Zhong, W. T. Chen, Z. H. Zhang, B. Li, H. Sun, T. Yang, and C. Tan. 2022. “SATNet: A Spatial Attention Based Network for Hyperspectral Image Classification.” Remote Sensing 14 (22): 5902. https://doi.org/10.3390/rs14225902.
  • Hovi, A., L. Korhonen, J. Vauhkonen, and I. Korpela. 2016. “LiDAR Waveform Features for Tree Species Classification and their Sensitivity to Tree-and Acquisition Related Parameters.” Remote Sensing of Environment 173:224–237. https://doi.org/10.1016/j.rse.2015.08.019.
  • Howard, A. G., M. L. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. 2017. “Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July 21–26.
  • Hu, Y., S. Tian, and J. Ge. 2023. “Hybrid Convolutional Network Combining Multiscale 3D Depthwise Separable Convolution and CBAM Residual Dilated Convolution for Hyperspectral Image Classification.” Remote Sensing 15 (19): 4796. https://doi.org/10.3390/rs15194796.
  • Huang, X., and L. P. Zhang. 2008. “An Adaptive Mean-shift Analysis Approach for Object Extraction and Classification from Urban Hyperspectral Imagery.” IEEE Transactions on Geoscience Remote Sensing 46 (12): 4173–4185. https://doi.org/10.1109/TGRS.2008.2002577.
  • Iverson, L. R., and D. McKenzie. 2013. “Tree-species Range Shifts in a Changing Climate: Detecting, Modeling, Assisting.” Landscape Ecology 28 (5): 879–889. https://doi.org/10.1007/s10980-013-9885-x.
  • Jones, T. G., N. C. Coops, and T. Sharma. 2010. “Assessing the Utility of Airborne Hyperspectral and LiDAR Data for Species Distribution Mapping in the Coastal Pacific Northwest, Canada.” Remote Sensing of Environment 114 (12): 2841–2852. https://doi.org/10.1016/j.rse.2010.07.002.
  • Kandare, K., H. O. Ørka, M. Dalponte, E. Næsset, and T. Gobakken. 2017. “Individual Tree Crown Approach for Predicting Site Index in Boreal Forests Using Airborne Laser Scanning and Hyperspectral Data.” International Journal of Applied Earth Observation and Geoinformation 60:72–82. https://doi.org/10.1016/j.jag.2017.04.008.
  • Kc, K., Z. D. Yin, M. Y. Wu, and Z. L. Wu. 2019. “Depthwise Separable Convolution Architectures for Plant Disease Classification.” Computers and Electronics in Agriculture 165:104948. https://doi.org/10.1016/j.compag.2019.104948.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436–444. https://doi.org/10.1038/nature14539.
  • Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-based Learning Applied to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.
  • Li, J., J. M. Bioucas-Dias, and A. Plaza. 2012. “Spectral–spatial Classification of Hyperspectral Data Using Loopy Belief Propagation and Active Learning.” IEEE Transactions on Geoscience and Remote Sensing 51 (2): 844–856. https://doi.org/10.1109/TGRS.2012.2205263.
  • Lim, K., P. Treitz, M. Wulder, B. St-Onge, and M. Flood. 2003. “LiDAR Remote Sensing of Forest Structure.” Progress in Physical Geography: Earth and Environment 27 (1): 88–106. https://doi.org/10.1191/0309133303pp360ra.
  • Mao, Y. W., Y. Guo, W. F. Zhang, Y. Su, and Y. Guan. 2023. “Tree Species Classification by Combining LiDAR, Hyperspectral Data and 3D-CNN Method.” Scientia Silvae Sinicae 59 (3): 73–83. https://doi.org/10.11707/j.1001-7488.LYKX20220533.
  • Mäyrä, J., S. Keski-Saari, S. Kivinen, T. Tanhuanpää, P. Hurskainen, P. Kullberg, L. Poikolainen, et al. 2021. “Tree Species Classification from Airborne Hyperspectral and LiDAR Data Using 3D Convolutional Neural Networks.” Remote Sensing of Environment 256:112322. https://doi.org/10.1016/j.rse.2021.112322.
  • Modzelewska, A., F. E. Fassnacht, and K. Stereńczak. 2020. “Tree Species Identification Within an Extensive Forest Area with Diverse Management Regimes Using Airborne Hyperspectral Data.” International Journal of Applied Earth Observation and Geoinformation 84:101960. https://doi.org/10.1016/j.jag.2019.101960.
  • Mohd Zaki, N. A., and Z. Abd Latif. 2017. “Carbon Sinks and Tropical Forest Biomass Estimation: A Review on Role of Remote Sensing in Aboveground-biomass Modelling.” Geocarto International 32 (7): 701–716. https://doi.org/10.1080/10106049.2016.1178814.
  • Moisen, G. G., E. A. Freeman, J. A. Blackard, T. S. Frescino, N. E. Zimmermann, and T. C. Edwards. 2006. “Predicting Tree Species Presence and Basal Area in Utah: A Comparison of Stochastic Gradient Boosting, Generalized Additive Models, and Tree-based Methods.” Ecological Modelling 199 (2): 176–187. https://doi.org/10.1016/j.ecolmodel.2006.05.021.
  • Nair, V., and G. E. Hinton. 2010. “Rectified Linear Units Improve Restricted Boltzmann Machines.” 27th International Conference on Machine Learning (ICML), Haifa, Israel, June 21–24.
  • Natesan, S., C. Armenakis, and U. Vepakomma. 2020. “Individual Tree Species Identification Using Dense Convolutional Network (DenseNet) on Multitemporal RGB Images from UAV.” Journal of Unmanned Vehicle Systems 8 (4): 310–333. https://doi.org/10.1139/juvs-2020-0014.
  • Nevalainen, O., E. Honkavaara, S. Tuominen, N. Viljanen, T. Hakala, X. Yu, J. Hyyppä, et al. 2017. “Individual Tree Detection and Classification with UAV-based Photogrammetric Point Clouds and Hyperspectral Imaging.” Remote Sensing 9 (3): 185. https://doi.org/10.3390/rs9030185.
  • Nezami, S., E. Khoramshahi, O. Nevalainen, I. Pölönen, and E. Honkavaara. 2020. “Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks.” Remote Sensing 12 (7): 1070. https://doi.org/10.3390/rs12071070.
  • Peng, C., X. Y. Zhang, G. Yu, G. M. Luo, and J. Sun. 2017. “Large Kernel Matters – Improve Semantic Segmentation by Global Convolutional Network.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July 21–26.
  • Pölönen, I., L. Annala, S. Rahkonen, O. Nevalainen, E. Honkavaara, S. Tuominen, N. Viljanen, and T. Hakala. 2018. “Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network.” 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, September 23–26.
  • Raczko, E., and B. Zagajewski. 2017. “Comparison of Support Vector Machine, Random Forest and Neural Network Classifiers for Tree Species Classification on Airborne Hyperspectral APEX Images.” European Journal of Remote Sensing 50 (1): 144–154. https://doi.org/10.1080/22797254.2017.1299557.
  • Reitberger, J., P. Krzystek, and U. Stilla. 2008. “Analysis of Full Waveform LIDAR Data for the Classification of Deciduous and Coniferous Trees.” International Journal of Remote Sensing 29 (5): 1407–1431. https://doi.org/10.1080/01431160701736448.
  • Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. 2018. “Mobilenetv2: Inverted Residuals and Linear Bottlenecks.” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, June 18–23.
  • Shang, X., and L. A. Chisholm. 2013. “Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (6): 2481–2489. https://doi.org/10.1109/JSTARS.2013.2282166.
  • Simonyan, K., and A. Zisserman. 2014. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, June 23–28.
  • Sothe, C., C. M. De Almeida, M. B. Schimalski, L. E. C. La Rosa, J. D. B. Castro, R. Q. Feitosa, M. Dalponte, et al. 2020. “Comparative Performance of Convolutional Neural Network, Weighted and Conventional Support Vector Machine and Random Forest for Classifying Tree Species Using Hyperspectral and Photogrammetric Data.” GIScience & Remote Sensing 57 (3): 369–394. https://doi.org/10.1080/15481603.2020.1712102.
  • Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of Machine Learning Research 15 (1): 1929–1958. https://doi.org/10.5555/2627435.2670313.
  • Sun, Y., J. F. Huang, Z. R. Ao, D. Z. Lao, and Q. C. Xin. 2019a. “Deep Learning Approaches for the Mapping of Tree Species Diversity in a Tropical Wetland Using Airborne LiDAR and High-Spatial-Resolution Remote Sensing Images.” Forests 10 (11): 1047. https://doi.org/10.3390/f10111047.
  • Sun, X., and Y. Shi. 2023. “The Image Recognition of Urban Greening Tree Species Based on Deep Learning and CAMP-MKNet Model.” Urban Forestry & Urban Greening 85:127970. https://doi.org/10.1016/j.ufug.2023.127970.
  • Sun, Y., Q. Xin, J. Huang, B. Huang, and H. Zhang. 2019b. “Characterizing Tree Species of a Tropical Wetland in Southern China at the Individual Tree Level Based on Convolutional Neural Network.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12 (11): 4415–4425. https://doi.org/10.1109/JSTARS.2019.2950721.
  • Suratno, A., C. Seielstad, and L. Queen. 2009. “Tree Species Identification in Mixed Coniferous Forest Using Airborne Laser Scanning.” ISPRS Journal of Photogrammetry Remote Sensing 64 (6): 683–693. https://doi.org/10.1016/j.isprsjprs.2009.07.001.
  • Szegedy, C., S. Ioffe, V. Vanhoucke, and A. Alemi. 2017. “Inception-v4, Inception-resnet and the Impact of Residual Connections on Learning.” Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, February 4–9.
  • Tan, M. X., and Q. Le. 2019. “Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks.” 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, June 10–15.
  • Thompson, I., B. Mackey, S. McNulty, and A. Mosseler. 2009. “Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems.” In Book Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems.
  • Valderrama-Landeros, L., F. Flores-de-Santiago, J. M. Kovacs, and F. Flores-Verdugo. 2017. “An Assessment of Commonly Employed Satellite-based Remote Sensors for Mapping Mangrove Species in Mexico Using an NDVI-based Classification Scheme.” Environmental Monitoring and Assessment 190 (1): 23. https://doi.org/10.1007/s10661-017-6399-z.
  • Xu, H., W. Yao, L. Cheng, and B. Li. 2021. “Multiple Spectral Resolution 3D Convolutional Neural Network for Hyperspectral Image Classification.” Remote Sensing 13 (7): 1248. https://doi.org/10.3390/rs13071248.
  • Yan, S. J., L. H. Jing, and H. Wang. 2021. “A New Individual Tree Species Recognition Method Based on a Convolutional Neural Network and High-spatial Resolution Remote Sensing Imagery.” Remote Sensing 13 (3): 479. https://doi.org/10.3390/rs13030479.
  • Yao, Y., H. M. Qin, Z. M. Zhang, W. M. Wang, and W. Q. Zhou. 2022. “The Classification of Subtropical Forest Tree Species Based on UAV Multi-source Remote Sensing Data.” Acta Ecologica Sinica 42 (9): 3666–3677. https://doi.org/10.5846/stxb202104160991.
  • Yu, X. W., J. Hyyppä, P. Litkey, H. Kaartinen, M. Vastaranta, and M. Holopainen. 2017. “Single-sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning.” Remote Sensing 9 (2): 108. https://doi.org/10.3390/rs9020108.
  • Yu, F., and V. Koltun. 2015. “Multi-scale Context Aggregation by Dilated Convolutions.” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 7–12.
  • Yu, X., P. Litkey, J. Hyyppä, M. Holopainen, and M. Vastaranta. 2014. “Assessment of Low Density Full-waveform Airborne Laser Scanning for Individual Tree Detection and Tree Species Classification.” Forests 5 (5): 1011–1031. https://doi.org/10.3390/f5051011.
  • Zhang, C., K. Xia, H. L. Feng, Y. H. Yang, and X. C. Du. 2021. “Tree Species Classification Using Deep Learning and RGB Optical Images Obtained by an Unmanned Aerial Vehicle.” Journal of Forestry Research 32 (5): 1879–1888. https://doi.org/10.1007/s11676-020-01245-0.
  • Zhang, L. P., L. F. Zhang, and B. Du. 2016. “Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the art.” IEEE Geoscience and Remote Sensing Magazine 4 (2): 22–40. https://doi.org/10.1109/MGRS.2016.2540798.
  • Zhang, T., X. Zhang, J. Shi, and S. Wei. 2019. “Depthwise Separable Convolution Neural Network for High-speed SAR Ship Detection.” Remote Sensing 11 (21): 2483. https://doi.org/10.3390/rs11212483.
  • Zhang, B., L. Zhao, and X. L. Zhang. 2020. “Three-dimensional Convolutional Neural Network Model for Tree Species Classification Using Airborne Hyperspectral Images.” Remote Sensing of Environment 247:111938. https://doi.org/10.1016/j.rse.2020.111938.
  • Zhang, X. Y., X. Y. Zhou, M. X. Lin, and J. Sun. 2018. “Shufflenet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.” 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, UT, USA, June 18–22.
  • Zheng, J., S. Yuan, W. Wu, W. Li, L. Yu, Haohuan Fu, and D. Coomes. 2023. “Surveying Coconut Trees Using High-resolution Satellite Imagery in Remote Atolls of the Pacific Ocean.” Remote Sensing of Environment 287:113485. https://doi.org/10.1016/j.rse.2023.113485.