1,038
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving global digital elevation models using space-borne GEDI and ICESat-2 LiDAR altimetry data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2316113 | Received 23 Nov 2023, Accepted 04 Feb 2024, Published online: 19 Feb 2024

References

  • Abdikan, S., A. Sekertekin, O. G. Narin, A. Delen, and F. B. Sanli. 2023. “A Comparative Analysis of SLR, MLR, ANN, XGBoost and CNN for Crop Height Estimation of Sunflower Using Sentinel-1 and Sentinel-2.” Advances in Space Research 71 (7): 3045–3059. https://doi.org/10.1016/j.asr.2022.11.046.
  • Adam, M., M. Urbazaev, C. Dubois, and C. Schmullius. 2020. “Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters.” Remote Sensing 12 (23): 3948. https://doi.org/10.3390/rs12233948.
  • Alganci, U., B. Besol, and E. Sertel. 2018. “Accuracy Assessment of Different Digital Surface Models.” ISPRS International Journal of Geo-Information 7 (3): 114. https://doi.org/10.3390/ijgi7030114.
  • Allaire, J., and F. Chollet. 2022. “keras: R Interface to ‘Keras’.” R package version 2.9.0, https://CRAN.R-project.org/package = keras.
  • Apeh, O. I., V. N. Uzodinma, E. S. Ebinne, E. C. Moka, and E. U. Onah. 2019. “Accuracy Assessment of Alos W3d30, Aster Gdem and Srtm30 Dem: A Case Study of Nigeria, West Africa.” Journal of Geographic Information System 11 (02): 111–123. https://doi.org/10.4236/jgis.2019.112009.
  • Bagheri, H., M. Schmitt, and X. X. Zhu. 2018. “Fusion of TanDEM-X and Cartosat-1 Elevation Data Supported by Neural Network-Predicted Weight Maps.” ISPRS Journal of Photogrammetry and Remote Sensing 144:285–297. https://doi.org/10.1016/j.isprsjprs.2018.07.007.
  • Balghin, W. G. V., and A. Coleman. 1965. “Puerto Rico.” Geography (Sheffield, England) 50 (3): 274–286. https://www.jstor.org/stable/40567047.
  • Chen, C., S. Yang, and Y. Li. 2020. “Accuracy Assessment and Correction of SRTM DEM Using ICESat/GLAS Data Under Data Coregistration.” Remote Sensing 12 (20): 3435. https://doi.org/10.3390/rs12203435.
  • Dandabathula, G. 2022. “Applications of ICES at-2 Photon Data in the Third Pole Environment.” Advances in Remote Sensing Technology and the Three Poles, 213–229. https://doi.org/10.1002/9781119787754.ch14.
  • DataTechNotes. n.d. "How to Fit Regression Data with CNN Model in R." Accessed June 15, 2023. https://www.datatechnotes.com/2020/01/how-to-fit-regression-data-with-cnn.html.
  • Dubayah, R., J. B. Blair, S. Goetz, L. Fatoyinbo, M. Hansen, S. Healey, M. Hofton, et al. 2020. “The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography.” Science of Remote Sensing 1:100002. https://doi.org/10.1016/j.srs.2020.100002.
  • Dubayah, R., Hofton, M., J. B. Blair, Armston, J., Tang, H., Luthcke, S. (2021). GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002 [Level 3A]. NASA EOSDIS Land Processes DAAC. Accessed June 15 2023. https://lpdaac.usgs.gov/documents/986/GEDI02_UserGuide_V2.pdf.
  • Elkhrachy, I. 2018. “Vertical Accuracy Assessment for SRTM and ASTER Digital Elevation Models: A Case Study of Najran City, Saudi Arabia.” Ain Shams Engineering Journal 9 (4): 1807–1817. https://doi.org/10.1016/j.asej.2017.01.007.
  • Farr, T. G, P. A Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, et al. 2007. “The Shuttle Radar Topography Mission.” Reviews of Geophysics 45 (2): 1–33. https://doi.org/10.1029/2005RG000183.
  • Geeksforgeeks. 2020. "How Neural Networks are used for Regression in R Programming?" Accessed June 1, 2023. https://www.geeksforgeeks.org/how-neural-networks-are-used-for-regression-in-r-programming/.
  • Girohi, P., and A. Bhardwaj. 2022. “A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India.” AI 3 (4): 820–843. https://doi.org/10.3390/ai3040050.
  • Ince, E. S., F. Barthelmes, S. Reißland, K. Elger, C. Förste, F. Flechtner, and H. Schuh. 2019. “ICGEM–15 Years of Successful Collection and Distribution of Global Gravitational Models, Associated Services, and Future Plans.” Earth System Science Data 11 (2): 647–674. https://doi.org/10.5194/essd-11-647-2019.
  • Karra, K., C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis, and S. P. Brumby. 2021. “Global Land use/Land Cover with Sentinel 2 and Deep Learning.” In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, July, Brussels, Belgium, 4704–4707. IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553499.
  • Khalsa, S. J. S., A. Borsa, V. Nandigam, M. Phan, K. Lin, C. Crosby, H. Fricker, et al. 2022. “OpenAltimetry-rapid Analysis and Visualization of Spaceborne Altimeter Data.” Earth Science Informatics 15: 1471–1480. https://doi.org/10.1007/s12145-020-00520-2.
  • Kuhn, M. 2022. “caret: Classification and Regression Training.” R package version 6.0-93. https://CRAN.R-project.org/package = caret.
  • Lee, H., and M. Hahn. 2020. “Point-To-Surface Matching for Dem Correction Using Icesat Data.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 43:715–720. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-715-2020.
  • Li, B., H. Xie, X. Tong, H. Tang, and S. Liu. 2023. “A Global-Scale DEM Elevation Correction Model Using ICESat-2 Laser Altimetry Data.” IEEE Transactions on Geoscience and Remote Sensing 61:1–15. https://doi.org/10.1109/TGRS.2023.3321956.
  • Liu, A., X. Cheng, and Z. Chen. 2021. “Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals.” Remote Sensing of Environment 264:112571. https://doi.org/10.1016/j.rse.2021.112571.
  • Mesa-Mingorance, J. L., and F. J. Ariza-López. 2020. “Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades.” Remote Sensing 12 (16): 2630. https://doi.org/10.3390/rs12162630.
  • Morison, J., S. Dickinson, D. Hancock, J. Robbins, and L. Roberts. 2022. “ICESat-2 ATL12 Ocean Surface Height and ATL19 Gridded Dynamic Ocean Topography.” In OCEANS 2022, Hampton Roads, Hampton Roads, VA, USA, October, 1–6. IEEE. https://doi.org/10.1109/OCEANS47191.2022.9977076.
  • Narin, O. G., and S. Abdikan. 2023. “Multi-temporal Analysis of Inland Water Level Change Using ICESat-2 ATL-13 Data in Lakes and Dams.” Environmental Science and Pollution Research 30 (6): 15364–15376. https://doi.org/10.1007/s11356-022-23172-9.
  • Narin, O. G., and M. Gullu. 2023. “A Comparison of Vertical Accuracy of Global DEMs and DEMs Produced by GEDI, ICESat-2.” Earth Science Informatics 16 (3): 2693–2707. https://doi.org/10.1007/s12145-023-01060-1.
  • Neuenschwander, A. L., and L. A. Magruder. 2019. “Canopy and Terrain Height Retrievals with ICESat-2: A First Look.” Remote Sensing 11 (14): 1721. https://doi.org/10.3390/rs11141721.
  • Neuenschwander, A. L., K. L. Pitts, B. P. Jelley, J. Robbins, B. Klotz, S. C. Popescu, R. F. Nelson, D. Harding, D. Pederson, and R. Sheridan. 2020. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 3. [Test Areas]. Boulder, CO, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL08.003.
  • Okolie, C. J., J. P. Mills, and J. L. Smit. 2022. Fusion of Copernicus and ALOS World 3D DEMs for Watershed and Stream Network Delineation.” Abstracts of the International Cartographic Association 5:142. https://doi.org/10.5194/ica-abs-5-142-2022.
  • Opentopograph. 2022. “Banks Peninsula, Environment Canterbury Regional Council, LINZ (2020).” Accessed January 28, 2022. https://doi.org/10.5069/G98W3BHC.
  • Panahi, M., N. Sadhasivam, H. R. Pourghasemi, F. Rezaie, and S. Lee. 2020. “Spatial Prediction of Groundwater Potential Mapping Based on Convolutional Neural Network (CNN) and Support Vector Regression (SVR).” Journal of Hydrology 588:125033. https://doi.org/10.1016/j.jhydrol.2020.125033.
  • Quirós, E, M. -E Polo, and L. Fragoso-Campón. 2021. “GEDI Elevation Accuracy Assessment: A Case Study of Southwest Spain.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 5285–5299. https://doi.org/10.1109/JSTARS.2021.3080711.
  • R-bloggers. 2020. "R XGBoost Regression." Accessed June 30, 2023. https://www.r-bloggers.com/2020/11/r-xgboost-regression/.
  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/
  • Sahin, E. K. 2020. “Assessing the Predictive Capability of Ensemble Tree Methods for Landslide Susceptibility Mapping Using XGBoost, Gradient Boosting Machine, and Random Forest.” SN Applied Sciences 2 (7): 1–17. https://doi.org/10.1007/s42452-020-3060-1.
  • Santillan, J. R., and M. Makinano-Santillan. 2016. “Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and Srtm Global Dems Over Northeastern Mindanao, Philippines.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 41:149–156. https://doi.org/10.5194/isprsarchives-XLI-B4-149-2016.
  • Shang, D., Y. Zhang, C. Dai, Q. Ma, and Z. Wang. 2022. “Extraction Strategy for ICESat-2 Elevation Control Points Based on ATL08 Product.” IEEE Transactions on Geoscience and Remote Sensing 60:1–12. https://doi.org/10.1109/TGRS.2022.3218750.
  • Shetty, S., P. C. Vaishnavi, P. Umesh, and A. Shetty. 2022. “Vertical Accuracy Assessment of Open Source Digital Elevation Models Under Varying Elevation and Land Cover in Western Ghats of India.” Modeling Earth Systems and Environment 8 (1): 883–895. https://doi.org/10.1007/s40808-021-01119-2.
  • Tachikawa, T., M. Hato, M. Kaku, and A. Iwasaki. 2011. “Characteristics of ASTER GDEM Version 2.” In 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, July, 3657–3660. IEEE. https://doi.org/10.1109/IGARSS.2011.6050017.
  • Tadono, T., H. Ishida, F. Oda, S. Naito, K. Minakawa, and H. Iwamoto. 2014. “Precise Global DEM Generation by ALOS PRISM.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (4): 71. https://doi.org/10.5194/isprsannals-II-4-71-2014.
  • United States Geological Survey. n.d. 2022. “United States Geological Survey LiDAR Point Cloud (USGS Lidar Point Cloud PR PRVI D 2018 19QGA46004800).” Accessed January 28, 2022. https://www.sciencebase.gov/catalog/item/5eb7a41882ce25b5135d09c1.
  • Urbazaev, M., L. L. Hess, S. Hancock, L. Y. Sato, J. P. Ometto, C. Thiel, C. Dubois, et al. 2022. “Assessment of Terrain Elevation Estimates from ICESat-2 and GEDI Spaceborne LiDAR Missions Across Different Land Cover and Forest Types.” Science of Remote Sensing 6:100067. https://doi.org/10.1016/j.srs.2022.100067.
  • U.S.D.A. n.d. "Wenaha -Tucannon Wilderness." United States Department of Agriculture, Forest Service. Accessed June 15, 2023. https://www.fs.usda.gov/recarea/umatilla/recarea/?recid = 56927.
  • Uuemaa, E., S. Ahi, B. Montibeller, M. Muru, and A. Kmoch. 2020. “Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM).” Remote Sensing 12 (21): 3482. https://doi.org/10.3390/rs12213482.
  • Van Zyl, J. J. 2001. “The Shuttle Radar Topography Mission (SRTM): A Breakthrough in Remote Sensing of Topography.” Acta Astronautica 48 (5-12): 559–565. https://doi.org/10.1016/S0094-5765(01)00020-0.
  • Vatandaslar, C., O. G. Narin, and S. Abdikan. 2023. “Retrieval of Forest Height Information Using Spaceborne LiDAR Data: A Comparison of GEDI and ICESat-2 Missions for Crimean Pine (Pinus nigra) Stands.” Trees 37 (3): 717–731. https://doi.org/10.1007/s00468-022-02378-x.
  • Washington State Department of Naturel Resources. n.d. “Washington LiDAR Portal.” Accessed January 28, 2022. https://lidarportal.dnr.wa.gov/.
  • Xiang, J., H. Li, J. Zhao, X. Cai, and P. Li. 2021. “Inland Water Level Measurement from Spaceborne Laser Altimetry: Validation and Comparison of Three Missions Over the Great Lakes and Lower Mississippi River.” Journal of Hydrology 597:126312. https://doi.org/10.1016/j.jhydrol.2021.126312.
  • Yamanokuchi, T., K. Doi, and K. Shibuya. 2007. “Combined Use of InSAR and ICESat/GLAS Data for High Accuracy DEM Generation on Antarctica.” In 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, July, 1229–1231. IEEE. https://doi.org/10.1109/IGARSS.2007.4423028.
  • Yue, L., H. Shen, L. Zhang, X. Zheng, F. Zhang, and Q. Yuan. 2017. “High-Quality Seamless DEM Generation Blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS Observations.” ISPRS Journal of Photogrammetry and Remote Sensing 123:20–34. https://doi.org/10.1016/j.isprsjprs.2016.11.002.
  • Zhang, Z., Y. Bo, S. Jin, G. Chen, and Z. Dong. 2023. “Dynamic Water Level Changes in Qinghai Lake from Integrating Refined ICESat-2 and GEDI Altimetry Data (2018-2021).” Journal of Hydrology 617:129007. https://doi.org/10.1016/j.jhydrol.2022.129007.