168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Topography and accumulation rate as controls of asynchronous surging behaviour in the eastern and western branches of the Western Kunlun Glacier, Northwestern Tibetan Plateau

ORCID Icon, , , , , & show all
Article: 2353112 | Received 17 Nov 2023, Accepted 04 May 2024, Published online: 13 May 2024

References

  • Bazai, N. A., P. Cui, P. A. Carling, H. Wang, J. Hassan, D. Liu, G. Zhang, and W. Jin. 2021. “Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram.” Earth-Science Reviews 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432.
  • Beaud, F., S. Aati, I. Delaney, S. Adhikari, and J. P. Avouac. 2022. “Surge Dynamics of Shisper Glacier Revealed by Time-Series Correlation of Optical Satellite Images and Their Utility to Substantiate a Generalized Sliding law.” The Cryosphere 16: 3123–3148. https://doi.org/10.5194/tc-16-3123–2022.
  • Benn, D. I., A. C. Fowler, I. Hewitt, and H. Sevestre. 2019. “A General Theory of Glacier Surges.” Journal of Glaciology 65 (253): 701–716. https://doi.org/10.1017/jog.2019.62.
  • Bhambri, R., K. Hewitt, P. Kawishwar, and B. Pratap. 2017. “Surge-type and Surge-Modified Glaciers in the Karakoram.” Scientific Reports 7: 15391. https://doi.org/10.1038/s41598-017-15473-8.
  • Clarke, G. K. 1976. “Thermal Regulation of Glacier Surging.” Journal of Glaciology 16 (74): 231–250. https://doi.org/10.3189/S0022143000031567.
  • Clarke, G. K., and M. J. Hambrey. 2019. “Structural Evolution During Cyclic Glacier Surges: 2. Numerical Modeling.” Journal of Geophysical Research: Earth Surface 124 (2): 495–525. https://doi.org/10.1029/2018JF004870.
  • Cuffey, K. M., and W. S. B. Paterson. 2010. The Physics of Glaciers. Academic Press.
  • Di Mauro, B., and D. Fugazza. 2022. “Pan-Alpine Glacier Phenology Reveals Lowering Albedo and Increase in Ablation Season Length.” Remote Sensing of Environment 279: 113119. https://doi.org/10.1016/j.rse.2022.113119.
  • Farinotti, D., M. Huss, J. J. Fürst, J. Landmann, H. Machguth, F. Maussion, and A. Pandit. 2019. “A Consensus Estimate for the ice Thickness Distribution of all Glaciers on Earth.” Nature Geoscience 12 (3): 168–173. https://doi.org/10.1038/s41561-019-0300-3.
  • Farinotti, D., W. W. Immerzeel, R. J. de Kok, D. J. Quincey, and A. Dehecq. 2020. “Manifestations and Mechanisms of the Karakoram Glacier Anomaly.” Nature Geoscience 13 (1): 8–16. https://doi.org/10.1038/s41561-019-0513-5.
  • Frappé, T. P., and G. K. Clarke. 2007. “Slow Surge of Trapridge Glacier, Yukon Territory, Canada.” Journal of Geophysical Research: Earth Surface 112: F03S32. https://doi.org/10.1029/2006JF000607.
  • Friedl, P., T. Seehaus, and M. Braun. 2021. “Global Time Series and Temporal Mosaics of Glacier Surface Velocities, Derived from Sentinel-1 Data.” Earth System Science Data 13: 4653–4675. https://doi.org/10.5194/essd-13-4653-2021.
  • Gao, Y., S. Liu, M. Qi, F. Xie, K. Wu, and Y. Zhu. 2021. “Glacier-related Hazards Along the International Karakoram Highway: Status and Future Perspectives.” Frontiers in Earth Science 9: 611501. https://doi.org/10.3389/feart.2021.611501.
  • Gardner, A. S., M. Fahnstock, and T. Scambos. 2019. "[update to time of data download]: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities: Version 1. Data archived at National Snow and Ice Data Center." https://doi.org/10.5067/IMR9D3PEI28U.
  • Girod, L., C. Nuth, A. Kääb, R. McNabb, and O. Galland. 2017. “MMASTER: Improved ASTER DEMs for Elevation Change Monitoring.” Remote Sensing 9: 704. https://doi.org/10.3390/rs9070704.
  • Glen, J. W. 1955. “The Creep of Polycrystalline ice.” Proceedings of the Royal Society A 228: 519–538. https://doi.org/10.1098/rspa.1955.0066.
  • Goerlich, F., T. Bolch, and F. Paul. 2020. “More Dynamic Than Expected: An Updated Survey of Surging Glaciers in the Pamir.” Earth System Science Data 12: 3161–3176. https://doi.org/10.5194/essd-12-3161-2020.
  • Guan, W., B. Cao, B. Pan, R. Chen, M. Shi, K. Li, X. Zhao, and X. Sun. 2021. “Updated Surge-Type Glacier Inventory in the West Kunlun Mountains, Tibetan Plateau, and Implications for Glacier Change.” Journal of Geophysical Research: Earth Surface 127: e2021JF006369. https://doi.org/10.1029/2021JF006369.
  • Guillet, G., O. King, M. Lv, S. Ghuffar, D. Benn, D. Quincey, and T. Bolch. 2022. “A Regionally Resolved Inventory of High Mountain Asia Surge-Type Glaciers, Derived from a Multi-Factor Remote Sensing Approach.” The Cryosphere 16: 603–623. https://doi.org/10.5194/tc-16-603-2022.
  • Guo, L., J. Li, A. Dehecq, Z. Li, X. Li, and J. Zhu. 2023. “A new Inventory of High Mountain Asia Surging Glaciers Derived from Multiple Elevation Datasets Since the 1970s.” Earth System Science Data 15: 2841–2861. https://doi.org/10.5194/essd-15-2841-2023.
  • Guo, L., J. Li, L. Wu, Z. Li, Y. Liu, X. Li, Z. Miao, and W. Wang. 2020. “Investigating the Recent Surge in the Monomah Glacier, Central Kunlun Mountain Range with Multiple Sources of Remote Sensing Data.” Remote Sensing 12: 966. https://doi.org/10.3390/rs12060966.
  • Guo, W., S. Liu, J. Xu, L. Wu, D. Shangguan, X. Yao, J. Wei, et al. 2015. “The Second Chinese Glacier Inventory: Data, Methods and Results.” Journal of Glaciology 61 (226): 357–372. https://doi.org/10.3189/2015JoG14J209.
  • Guo, W., Z. Zhang, K. Wu, S. Liu, J. Xu, Z. Jiang, D. Shangguan, and X. Wang. 2022. “A Review on the Advances in Surge-Type Glacier Study.” Journal of Glaciology and Geocryology 44: 954–970. https://doi.org/10.7522/j.issn.1000-0240.2022.0091.
  • Hall, D. K., K. J. Bahr, W. Shoener, R. A. Bindschadler, and J. Y. L. Chien. 2003. “Consideration of the Errors Inherent in Mapping Historical Glacier Positions in Austria from the Ground and Space (1893–2001).” Remote Sensing of Environment 86 (4): 566–577. https://doi.org/10.1016/S0034-4257(03)00134-2.
  • Harrison, W. D., and A. S. Post. 2003. “How Much do we Really Know About Glacier Surging?” Annals of Glaciology 36: 1–6. https://doi.org/10.3189/172756403781816185.
  • Huss, M. 2013. “Density Assumptions for Converting Geodetic Glacier Volume Change to Mass Change.” The Cryosphere 7: 877–887. https://doi.org/10.5194/tc-7-877-2013.
  • Jiang, Z., K. Wu, S. Liu, X. Wang, Y. Zhang, A. A. Tahir, and S. Long. 2021. “Surging Dynamics of South Rimo Glacier, Eastern Karakoram.” Environmental Research Letters 16 (11): 114044. https://doi.org/10.1088/1748-9326/ac3175.
  • Kamb, B., C. F. Raymond, W. D. Harrison, H. Engelhardt, K. A. Echelmeyer, N. Humphrey, M. M. Brugman, and T. Pfeffer. 1985. “Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska.” Science 227 (4686): 469–479. https://doi.org/10.1126/science.227.4686.469.
  • Leprince, S., F. Ayoub, Y. Klinger, and J. P. Avouac. 2007. “Co-registration of Optically Sensed Images and Correlation (COSI-Corr): An Operational Methodology for Ground Deformation Measurements.” In 2007 IEEE International Geoscience and Remote Sensing Symposium, 1943–1946. IEEE.
  • Lovell, A. M., J. R. Carr, and C. R. Stokes. 2018. “Topographic Controls on the Surging Behaviour of Sabche Glacier, Nepal (1967 to 2017).” Remote Sensing of Environment 210: 434–443. https://doi.org/10.1016/j.rse.2018.03.036.
  • Lv, M., H. Guo, X. Lu, G. Liu, S. Yan, Z. Ruan, Y. Ding, and D. J. Quincey. 2019. “Characterizing the Behaviour of Surge-and non-Surge-Type Glaciers in the Kingata Mountains, Eastern Pamir, from 1999 to 2016.” The Cryosphere 13: 219–236. https://doi.org/10.5194/tc-13-219-2019.
  • Meier, M. F., and A. Post. 1969. “What are Glacier Surges?” Canadian Journal of Earth Sciences 6 (4): 807–817. https://doi.org/10.1139/e69-081.
  • Murray, T., T. Strozzi, A. Luckman, H. Jiskoot, and P. Christakos. 2003. “Is There a Single Surge Mechanism? Contrasts in Dynamics Between Glacier Surges in Svalbard and Other Regions.” Journal of Geophysical Research: Earth Surface 108: 2237. https://doi.org/10.1029/2002JB001906.
  • Nolan, A., W. Kochtitzky, E. M. Enderlin, R. McNabb, and K. J. Kreutz. 2021. “Kinematics of the Exceptionally-Short Surge Cycles of Sít’Kusá (Turner Glacier), Alaska, from 1983 to 2013.” Journal of Glaciology 67 (264): 744–758. https://doi.org/10.1017/jog.2021.29.
  • Nuth, C., and A. Kääb. 2011. “Co-registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change.” The Cryosphere 5: 271–290. https://doi.org/10.5194/tc-5-271-2011.
  • Quincey, D. J., N. F. Glasser, S. J. Cook, and A. Luckman. 2015. “Heterogeneity in Karakoram Glacier Surges.” Journal of Geophysical Research: Earth Surface 120 (7): 1288–1300. https://doi.org/10.1002/2015JF003515.
  • Sevestre, H., and D. I. Benn. 2015. “Climatic and Geometric Controls on the Global Distribution of Surge-Type Glaciers: Implications for a Unifying Model of Surging.” Journal of Glaciology, 646–662. https://doi.org/10.3189/2015JoG14J136.
  • Shean, D. E., S. Bhushan, P. Montesano, D. R. Rounce, A. Arendt, and B. Osmanoglu. 2020. “A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance.” Frontiers in Earth Science 7: 363. https://doi.org/10.3389/feart.2019.00363.
  • Yao, X., S. Zhou, M. Sun, H. Duan, and Y. Zhang. 2023. “Surging Glaciers in High Mountain Asia Between 1986 and 2021.” Remote Sensing 15: 4595. https://doi.org/10.3390/rs15184595.
  • Yasuda, T., and M. Furuya. 2015. “Dynamics of Surge-Type Glaciers in West Kunlun Shan, Northwestern Tibet.” Journal of Geophysical Research: Earth Surface 120 (11): 2393–2405. https://doi.org/10.1002/2015JF003511.
  • Zemp, M., E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, et al. 2013. “Reanalysing Glacier Mass Balance Measurement Series.” The Cryosphere 7: 1227–1245. https://doi.org/10.5194/tc-7-1227-2013.
  • Zhang, Z., P. Tao, S. Liu, S. Zhang, D. Huang, K. Hu, and Y. Lu. 2022. “What Controls the Surging of Karayaylak Glacier in Eastern Pamir? New Insights from Remote Sensing Data.” Journal of Hydrology 607: 127577. https://doi.org/10.1016/j.jhydrol.2022.127577.
  • Zhang, C., X. Yao, S. Li, L. Liu, T. Sha, and Y. Zhang. 2023. “Glacier Change in the West Kunlun Main Peak Area from 2000 to 2020.” Remote Sensing 15: 4236. https://doi.org/10.3390/rs15174236.