125
Views
1
CrossRef citations to date
0
Altmetric
Articles

A new solution technique for cathodic protection systems with homogeneous region by the boundary element method

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 368-382 | Received 21 Sep 2017, Accepted 03 Nov 2017, Published online: 22 Feb 2018

References

  • Abromowitz, M. , & Stegun, I. A. (1965). Handbook of mathematical functions . New York, NY: Dover.
  • Azevedo, J. P. S. , & Wrobel, L. C. (1988). Nonlinear heat conduction in composite bodies: A boundary element formulation. International Journal for Numerical Methods in Engineering , 26 , 19–38. doi:10.1002/nme.1620260103
  • BEASY (2000). BEASY user guide . Southampton: Computational Mechanics BEASY Ltd.
  • Brasil, S. L. D. C. , Telles, J. C. F. , & Miranda, L. R. M. (1991). On the effect of some critical parameters in cathodic protection systems: A numerical/experimental study. In R. S. Munn (Ed.), Computer Modeling in Corrosion, ASTM STP 1154 (pp. 277–291). Philadelphia, PA: American Society for Testing and Materials. doi:10.1520/STP24703S
  • Brebbia, C. A. , & Dominguez, J. (1989). Boundary elements: An introductory course . Southampton: Computational Mechanics Publications.
  • Brebbia, C. A. , Telles, J. C. F. , & Wrobel, L. C. (1984). Boundary element techniques: Theory and applications in engineering . Berlin: Springer-Verlag.
  • Brebbia, C. A. , & Walker, S. (1980). Boundary element techniques in engineering . London: Butter-worths.
  • Fontana, M. G. , & Greene, N. D. (1967). Corrosion engineering . New York, NY: McGraw-Hill.
  • ISO/15589-1 (2015). Petroleum, petrochemical and natural gas industries -- Cathodic protection of pipeline systems . Part 1, On-land pipelines.
  • Kim, Y. S. , Kim, J. , Choi, D. , Lim, J. Y. , & Kim, J. G. (2017). Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method. Engineering Analysis with Boundary Elements , 77 , 36–48. doi:10.1016/j.enganabound.2017.01.003
  • Kita, E. , & Kamiya, N. (1994). Subregion boundary element method. JSME International Journal Series A, Mechanics and Material Engineering , 37 , 366–372. doi:10.1299/kikaia.59.415
  • Koszewski, L. (1999). Retrofitting asphalt storage tanks with an improved cathodic protection system. Materials Performance , 38 (6), 20–24.
  • Lu, X. , & Wu, W. (2005). A new subregion boundary element technique based on the domain decomposition method. Engineering Analysis with Boundary Elements , 29 , 944–952. doi:10.1016/j.enganabound.2005.08.001
  • Montoya, R. , Aperador, W. , & Bastidas, D. M. (2009). Influence of conductivity on cathodic protection of reinforced alkali-activated slag mortar using the finite element method. Corrosion Science , 51 , 2857–2862. doi:10.1016/j.corsci.2009.08.020
  • Montoya, R. , Gakvan, J. C. , & Genesca, J. C. (2011). Using the right side of Poissons equation to save on numerical calculations in FEM simulation of electrochemical systems. Corrosion Science , 53 , 1806–1812. doi:10.1016/j.corsci.2011.01.059
  • NACE/SP0169 (2007). Standard practice control of external corrosion on underground or submerged metallic piping systems .
  • Parsa, M. H. , Allahkaram, S. R. , & Ghobadi, A. H. (2010). Simulation of cathodic protection potential distributions on oil well casings. Journal of Petroleum Science and Engineering , 72 , 215–219. doi:10.1016/j.petrol.2010.03.020
  • Peabody, A. W. (2001). Peabody’s control of pipeline corrosion (2nd ed.). Houston, TX: NACE International.
  • Riemer, D. P. , & Orazem, M. E. (2010). A mathematical model for the cathodic protection of tank bottoms. Corrosion Science , 47 , 849–868. doi:10.1016/j.corsci.2004.07.018
  • Roberge, P. R. (1999). Handbook of corrosion engineering . New York, NY: McGraw-Hill.
  • Santiago, J. A. F. , & Telles, J. C. F. (1997). On boundary elements for simulation of cathodic protection systems with dynamic polarization curves. International Journal for Numerical Methods in Engineering , 40 , 2611–2622. doi:10.1002/(SICI)1097-0207
  • Santos, W. J. , Santiago, J. A. F. , & Telles, J. C. F. (2012). An application of genetic algorithms and the method of fundamental solutions to simulate cathodic protection systems. Computer Modeling in Engineering & Sciences , 87 , 23–40. doi:10.3970/cmes.2012.087.023
  • Santos, W. J. , Santiago, J. A. F. , & Telles, J. C. F. (2014). Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions. Engineering Analysis with Boundary Elements , 46 , 67–74. doi:10.1016/j.enganabound.2014.05.009
  • Santos, W. J. , Santiago, J. A. F. , & Telles, J. C. F. (2016). Using the Gaussian function to simulate constant potential anodes in multiobjective optimization of cathodic protection systems. Engineering Analysis with Boundary Elements , 73 , 35–41. doi:10.1016/j.enganabound.2016.08.014
  • Telles, J. C. F. , Mansur, W. J. , Wrobel, L. C. , & Marinho, M. G. (1990). Numerical simulation of a cathodically protected semisubmersible platform using PROCAT system. Corrosion , 46 , 513–518. doi:10.5006/1.3585141
  • US-EPA (1988). Title40 code of federal regulations, parts 280 and 281 . September.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.