45
Views
0
CrossRef citations to date
0
Altmetric
Articles

A boundary element implementation for fracture mechanics problems using generalised Westergaard stress functions

ORCID Icon, ORCID Icon & ORCID Icon
Pages 401-424 | Received 18 Dec 2017, Accepted 09 Jul 2018, Published online: 30 Jul 2018

References

  • Anderson, T. L. (1995). Fracture mechanics: Fundamentals and applications. 2nd edition. C. R. C. Press. Boca Raton, New York
  • Ang, W. T., & Telles, J. C. F. (2004). A numerical Green’s function for multiple cracks in anisotropic bodies. Journal of Engineering Mathematics, 49(3), 197–207.
  • Barenblatt, G. I. (1962).The mathematical theory of equilibrium cracks in brittle fracture. In Advances in applied mechanics. VII, 55–129. Academic Press: Amsterdam.
  • Brebbia, C. A., Telles, J. C. F., & Wrobel, L. C. (1984). Boundary element techniques: Theory and applications in engineering. Berlin: Prentice Hall.
  • Brown, W. F., & Strawley, J. E. (1966). Plane strain crack toughness testing of high strength metallic materials. In ASTM STP 410 (pp. 5). American Society For Testing And Materials: Philadelphia, PA.
  • Cardoso, M. L. (2017). A boundary element implementation for fracture mechanics problems using generalized westergaard stress functions. MSc. thesis (in Portuguese), Pontifical Catholic University of Rio de Janeiro, Brazil.
  • Crouch, S. L., & Starfield, A. M. (1983). Boundary element methods in solid mechanics. London: George Allen & Unwin.
  • Dugdale, D. S. (1960). Yielding in steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8, 100–104.
  • Dumont, N. A. (1989). The hybrid boundary element method: An alliance between mechanical consistency and simplicity. Applied Mechanics Reviews, 42(11–2), S54–S63.
  • Dumont, N. A. (1994). On the efficient numerical evaluation of integrals with complex singularity poles. Engineering Analysis with Boundary Elements, 13, 155–168.
  • Dumont, N. A. (2014). The hypersingular boundary element method revisited. In C. A. Brebbia & A. H.-D. Cheng (eds), Boundary elements and other mesh reduction methods XXXVII, WIT transactions on modelling and simulation (Vol. 57, pp. 27–39).
  • Dumont, N. A. (2018). The collocation boundary element method revisited: Perfect code for 2D poblems. International Journal Comparative Meth and Experiments Measurement, 6(6), 965–975.
  • Dumont, N. A., & Aguilar, C. A. (2012). The best of two worlds: The expedite boundary element method. Engineering Structures, 43, 235–244.
  • Dumont, N. A., Chaves, R. P., & Paulino, G. H. (2004). The hybrid boundary element method applied to problems of potential of functionally graded materials. International Journal of Computational Engineering Science (IJCES), 5(4), 863–891.
  • Dumont, N. A., & De Oliveira, R. (2001). From frequency-dependent mass and stiffness matrices to the dynamic response of elastic systems. International Journal of Solids and Structures, 38(10–13), 1813–1830.
  • Dumont, N. A., & Huaman, D. (2009). Hybrid finite/boundary element formulation for strain gradient elasticity problems. In E. J. Sapountzakis & M. H. Aliabadi, eds., Advances in Boundary Element Techniques X, Proceedings of the 10th International Conference, pp. 295–300, EC, Ltd., UK.
  • Dumont, N. A., & Lopes, A. A. O. (2003). On the explicit evaluation of stress intensity factors in the hybrid boundary element method. Fatigue & Fracture of Engineering Materials & Structures, 26, 151–165.
  • Dumont, N. A., & Mamani, E. Y. (2011a). Use of generalized Westergaard stress functions as fundamental solutions. In E. L. Albuquerque & M. H. Aliabadi (eds), Advances in boundary element techniques XII (pp. 170–175). UK: EC, Ltd.
  • Dumont, N. A., & Mamani, E. Y. (2011b). Generalized Westergaard stress functions as fundamental solutions. Computer Modeling in Engineering & Sciences, 78(2), 109–150.
  • Dumont, N. A., & Mamani, E. Y. (2013). Simulation of plastic zone propagation around crack tips using the hybrid boundary element method. In Z. J. G. N. Del Prado ed, CILAMCE – XXXIV iberian latin-american congress on computational methods in engineering 20 pp on CD. Pirenópolis, Brazil
  • Dumont, N. A., Mamani, E. Y., & Cardoso, M. L. (2017). A boundary element implementation for fracture mechanics problems using generalized Westergaard stress functions. In L. Marin & M. H. Aliabadi (eds), Advances in boundary element & meshless techniques XVIII (pp. 120–125). UK: LC, Ltd.
  • Eftis, J., & Liebowitz, H. (1972). On the modified Westergaard equations for certain plane crack problems. International Journal of Fracture Mechanics, 8(4), 383–392.
  • Gupta, M., Alderliesten, R. C., & Benedictus, R. (2015). A review of T-stress and its effects in fracture mechanics. Engineering Fracture Mechanics, 134, 218–241.
  • Harmain, G. A., & Provan, J. W. (1997). Fatigue crack-tip plasticity revisited – The issue of shape addressed. Theory and Application Fracture Mechanics, 26, 63–79.
  • Irwin, G. R. (1957). Analysis of stresses and strain near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–364.
  • Jing, P., Khraishi, T., & Gorbatikh, L. (2003). Closed-form solutions for the mode II crack tip plastic zone shape. International Journal of Fracture, 122, 137–142.
  • Lopes, A. A. O. (1998). The hybrid boundary element method applied to fracture mechanics problems. MSc. thesis (in Portuguese), Pontifical Catholic University of Rio de Janeiro, Brazil.
  • Lopes, A. A. O. (2002). Evaluation of stress intensity factors with the hybrid boundary element method. PhD. thesis (in Portuguese), Pontifical Catholic University of Rio de Janeiro, Brazil.
  • Mamani, E. Y. (2011). The hybrid boundary element method based on generalized Westergaard stress functions. MSc. thesis (in Portuguese), Pontifical Catholic University of Rio de Janeiro, Brazil.
  • Mamani, E. Y. (2015). Crack modeling using generalized Westergaard stress functions in the hybrid boundary element method. PhD. thesis (in Portuguese), Pontifical Catholic University of Rio de Janeiro, Brazil.
  • Mamani, E. Y., & Dumont, N. A. (2015). Use of improved Westergaard stress functions to adequately simulate the stress field around crack tips. In N. A. Dumont ed, CILAMCE – XXXVI iberian latin-american congress on computational methods in engineering (17). ISSN: 2178-4949. doi:10.20906/CPS/CILAMCE2015-0840http://www.swge.inf.br/proceedings/CILAMCE2015/ Rio de Janeiro, Brazil
  • Pian, T. H. H. (1964). Derivation of element stiffness matrices by assumed stress distribution. AIAA Journal, 2, 1333–1336.
  • Sneddon, I. N. (1946). The distribution of stress in the neighborhood of a crack in an elastic solid. Proceedings of the Royal Society of London A, 187, 229–260.
  • Sousa, R. A., Castro, J. T. P., Lopes, A. A. O., & Martha, L. F. (2013). On improved crack tip plastic zone estimates based on t-stress and on complete stress fields. Fatigue & Fracture of Engineering Materials & Structures, 36(1), 25–38.
  • Tada, H., Ernst, H., & Paris, P. (1993). Westergaard stress functions for displacement-prescribed crack problems - I. International Journal of Fracture, 61, 39–53.
  • Tada, H., Ernst, H., & Paris, P. (1994). Westergaard stress functions for displacement-prescribed crack problems - II. International Journal of Fracture, 67, 151–167.
  • Telles, J. C. F., Castor, G. S., & Guimares, S. (1995). A numerical Green’s function approach for boundary elements applied to fracture mechanics. International Journal for Numerical Methods in Engineering, 38, 3259–3274.
  • Westergaard, H. M. (1939). Bearing pressures and cracks. Journal of Applied Mechanics, 6, 49–53.
  • Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24, 109–114.
  • Xin, G., Hangong, W., Xingwu, K., & Liangzhou, J. (2010). Analytic solutions to crack tip plastic zone under various loading conditions. European Journal of Mechanics A/Solids, 29, 738–745.
  • Zhang, Y., Qiang, H., & Yang, Y. (2007). Unified solutions to mixed mode crack tip under small scale yielding. Chinese Journal of Mechanical Engineering, 43(2), 50–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.