121
Views
0
CrossRef citations to date
0
Altmetric
Articles

3D Boundary element meshing for multiscale bone anisotropic analysis

, ORCID Icon, &
Pages 425-442 | Received 15 Nov 2017, Accepted 26 Jun 2018, Published online: 02 Oct 2018

References

  • Aliabadi, M. H. (2002). The boundary element method applications in solids and structures (Vol. 2, Wiley Ed.). London: Author.
  • Amestoy, P. R., Duff, I. S., Koster, J., & L’Excellent, J.-Y. (2001). A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1), 15–41.
  • Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., & Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems. Parallel Computing, 32(2), 136–156.
  • Barkaoui, A., Chamekh, A., Merzouki, T., Hambli, R., & Mkaddem, A. (2014). Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. International Journal For Numerical Methods In Biomedical Engineering, 30, 318–338.
  • Barkaoui, A., Tlili, B., & Vercher-Martnez, A. (2016). A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method. Computer Methods and Programs in Biomedicine, 134, 69–78.
  • Benedetti, I., & Aliabadi, M. H. (2013). A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials. Computational Materials Science, 67, 249–260.
  • Dong, P., Pacureanu, A., Zuluaga, M. A., Olivie, C., Grimal, Q., & Peyrini, F. (2014). Quantification of the 3D morphology of the bone cell network from synchrotron micro-CT images. Image Analysis & Stereology, 33, 1–10.
  • Fritzen, F., Hlke, T., & Schnack, E. (2009). Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellation. Computational Mechanics, 43, 701–713.
  • Galvis, A. F., Rodriguez, R. Q., & Sollero, P. (2018). Analysis of three-dimensional hexagonal and cubic polycrystals using the boundary element method. Mechanics of Materials, 117, 58–72.
  • Galvis, A. F., Rodriguez, R. Q., Sollero, P., & Alburquerque, E. L. (2013). Multidomain formulation of BEM analysis applied to large-scale polycrystalline materials. CMES: Computer Modeling in Engineering & Science, 96(2), 103–115.
  • Ghanbari, J., & Naghdabadi, R. (2009). Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. Journal of Biomechanics, 42, 1560–1565.
  • Hamed, E., & Jasiuk, J. (2012). Elastic modeling of bone at nanostructural level. Materials Science and Engineering, 73, 27–49.
  • He, Y., Zhan, Y., Jiang, Y., & Zhou, R. (2017). Fabrication and characterization of superelastic TiNb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications. Journal of Materials Research, 32, 2510–2520.
  • Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of Mechanics and Physics of Solids, 11, 357–372.
  • Hsu, J.-T., Wang, S.-P., Huang, H.-L., Chen, Y.-J., Wu, J., & Tsai, M.-T. (2013). The assessment of trabecular bone parameters and cortical bone strength: A comparison of micro-CT and dental cone-beam CT. Journal of Biomechanics, 46, 2611–2618.
  • Kane, J. H. (1994). Boundary element analysis in engineering continuum mechanics (Prentice-Hall Ed.). New Jersey: Author.
  • McNally, E. A., Schwarcz, H. P., Botton, G. A., & Arsenault, A. L. (2012). A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE, 7, e29258.
  • Muller, R., Campenhout, H. V., Damme, B. V., Perre, G. V. D., Dequeker, J., Hildebrand, T., & Ruegsegger, P. (1998). Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone, 23, 59–66.
  • Nair, A. K., Gautieri, A., & Buehler, M. J. (2014). Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules, 15, 24942500.
  • Podshivalov, L., Fischer, A., & Bar-Yoseph, P. Z. (2014). On the road to personalized medicine: Multiscale computational modeling of bone tissue. Archives of Computational Methods in Engineering, 21, 399–479.
  • Reiser, M., Hricak, H., & Knauth, M. (2013). Osteoporosis and bone densitometry measurements (Vol. 1, G. Guglielmi Ed.). Berlin: Springer.
  • Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering and Physics, 20, 92–102.
  • Ritchie, R. O., Buehler, M. J., & Hansma, P. (2009). Plasticity and toughness in bone. Physics Today, 62(6), 41–46.
  • Ryan, G., Pandit, A., & Apatsidis, D. P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27, 2651–2670.
  • Sabet, F. A., Najafi, A. R., Hamed, E., & Jasiuk, I. (2016). Modelling of bone fracture and strength at different length scales: A review. Interface Focus, 6, 20150055.
  • Schwarcz, H. P., McNally, E. A., & Botton, G. A. (2014). Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. Journal of Structural Biology, 188, 240–248.
  • Shiah, Y. C., Tan, C. L., & Wang, C. Y. (2012a). Efficient computation of the Green’s function and its derivatives for three-dimensional anisotropic elasticity in BEM analysis. Engineering Analysis with Boundary Elements, 36, 1746–1755.
  • Shiah, Y. C., Tan, C. L., & Wang, C. Y. (2012b). An efficient numerical scheme for the evaluation of the fundamental solution and its derivatives in 3D generally anisotropic elasticity. Advances in Boundary Element and Meshless Techniques XIII, 87(1), 190–199.
  • Shirazia, H. A., Ayatollahia, M. R., & Asnafib, A. (2017). To reduce the maximum stress and the stress shielding effect around a dental implant bone interface using radial functionally graded biomaterials. Computer Methods in Biomechanics and Biomedical Engineering, 20, 750–759.
  • Sun, X. S., Tan, V. B. C., Chen, Y., Tan, L. B., Jaiman, R. K., & Tay, T. E. (2014). Stress analysis of multi-layered hollow anisotropic composite cylindrical structures using the homogenization method. Acta Mechanica, 225, 1649–1672.
  • Tan, C. L., Shiah, Y. C., & Wang, C. Y. (2013). Boundary element elastic stress analysis of 3D generally anisotropic solids using fundamental solutions based on Fourier series. International Journal of Solids and Structures, 50, 2701–2711.
  • Vaughan, T., McCarthyb, C., & McNamaraa, L. (2012). A three-scale fnite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 12, 50–62.
  • Yoon, Y. J., & Cowin, S. C. (2008). The estimated elastic constants for a single bone osteonal lamella. Biomechanics and Modeling in Mechanobiology, 7, 1–11.
  • Zohdi, T. I., & Wriggers, P. (2005). An introduction to computational micromechanics (Vol. 20, T. I. Zohdi & P. Wriggers Eds.). Berlin: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.