1,776
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mutations in human prion-like domains: pathogenic but not always amyloidogenic

ORCID Icon, ORCID Icon & ORCID Icon
Pages 28-39 | Received 08 Jan 2024, Accepted 06 Mar 2024, Published online: 21 Mar 2024

References

  • Nizhnikov AA, Antonets KS, Bondarev SA, et al. Prions, amyloids, and RNA: pieces of a puzzle. Prion. 2016;10(3):182–206. doi: 10.1080/19336896.2016.1181253
  • Sawaya MR, Hughes MP, Rodriguez JA, et al. The expanding amyloid family: structure, stability, function, and pathogenesis. Cell. 2021;184(19):4857–4873. doi: 10.1016/j.cell.2021.08.013
  • Thompson MJ, Sievers SA, Karanicolas J, et al. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci. 2006;103(11):4074–4078. doi: 10.1073/pnas.0511295103
  • Kim HJ, Kim NC, Wang Y-D, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467–473. doi: 10.1038/nature11922
  • Behbahanipour M, García-Pardo J, Ventura S. Decoding the role of coiled-coil motifs in human prion-like proteins. Prion. 2021;15(1):143–154. doi: 10.1080/19336896.2021.1961569
  • King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012;1462:61–80. doi:10.1016/j.brainres.2012.01.016
  • Song J. Molecular mechanisms of phase separation and amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis. 2023. doi: 10.14336/AD.2023.1118
  • Ocharán-Mercado A, Loaeza-Loaeza J, Castro-Coronel Y, et al. RNA-Binding Proteins: A Role in Neurotoxicity? Neurotox Res. 2023;41(6):681–697. doi: 10.1007/s12640-023-00669-w
  • Purice MD, Taylor JP. Linking hnRNP function to ALS and FTD pathology. Front Neurosci. 2018;12:326. doi:10.3389/fnins.2018.00326
  • Garcia-Pardo J, Ventura S. Cryo-EM structures of functional and pathological amyloid ribonucleoprotein assemblies. Trends Biochem Sci. 2023; 49 (2) 119–133. doi:10.1016/j.tibs.2023.10.005
  • Batlle C, Ventura S. Prion-like domain disease-causing mutations and misregulation of alternative splicing relevance in limb-girdle muscular dystrophy (LGMD) 1G. Neural Regen Res. 2020;15(12):2239. doi: 10.4103/1673-5374.284988
  • Kemmerer K, Fischer S, Weigand JE. Auto- and cross-regulation of the hnRNPs D and DL. RNA. 2018;24(3):324–331. doi: 10.1261/rna.063420.117
  • Li Z, Wei H, Hu D, et al. Research progress on the structural and functional roles of hnRNPs in muscle development. Biomolecules. 2023;13(10):1434. doi: 10.3390/biom13101434
  • Scheres SHW. Amyloid structure determination in RELION-3.1. Acta Crystallogr D Struct Biol. 2020;76(2):94–101. 10.1107/S2059798319016577
  • Lövestam S, Scheres SHW High-throughput cryo-EM structure determination of amyloids. Faraday Discuss. 2022;240, 243–260. 10.1039/D2FD00034B
  • Thurber KR, Yin Y, Tycko R. Automated picking of amyloid fibrils from cryo-EM images for helical reconstruction with RELION. J Struct Biol. 2021;213(2):107736. doi: 10.1016/j.jsb.2021.107736
  • Sun Y, Zhao K, Xia W, et al. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nat Commun. 2020;11(1):6349. doi: 10.1038/s41467-020-20227-8
  • Lu J, Cao Q, Hughes MP, et al. CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat Commun. 2020;11(1):4090. doi: 10.1038/s41467-020-17905-y
  • Lu J, Ge P, Sawaya MR, et al. Cryo-EM structures of the D290V mutant of the hnRNPA2 low-complexity domain suggests how D290V affects phase separation and aggregation. J Biol Chem. 2023; 300(2): 105531. doi:10.1016/j.jbc.2023.105531
  • Kumar ST, Nazarov S, Porta S, et al. Seeding the aggregation of TDP-43 requires post-fibrillization proteolytic cleavage. Nat Neurosci. 2023;26(6):983–996. doi: 10.1038/s41593-023-01341-4
  • Li Q, Babinchak WM, Surewicz WK. Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43. Nat Commun. 2021;12(1):1620. doi: 10.1038/s41467-021-21912-y
  • Cao Q, Boyer DR, Sawaya MR, et al. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat Struct Mol Biol. 2019;26(7):619–627. doi: 10.1038/s41594-019-0248-4
  • Lee M, Ghosh U, Thurber KR, et al. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Nat Commun. 2020;11(1):5735. doi: 10.1038/s41467-020-19512-3
  • Sun Y, Zhang S, Hu J, et al. Molecular structure of an amyloid fibril formed by FUS low-complexity domain. iScience. 2022;25(1):103701. doi: 10.1016/j.isci.2021.103701
  • Garcia-Pardo J, Bartolomé-Nafría A, Chaves-Sanjuan A, et al. Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3. Nat Commun. 2023;14(1):239. doi: 10.1038/s41467-023-35854-0
  • Sharma K, Banerjee S, Savran D, et al. Cryo-EM structure of the full-length hnRNPA1 amyloid fibril. J Mol Biol. 2023;435(18):168211. doi: 10.1016/j.jmb.2023.168211
  • Arseni D, Hasegawa M, Murzin AG, et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature. 2022;601(7891):139–143. doi: 10.1038/s41586-021-04199-3
  • Arseni D, Chen R, Murzin AG, et al. TDP-43 forms amyloid filaments with a distinct fold in type a FTLD-TDP. Nature. 2023;620(7975):898–903. doi: 10.1038/s41586-023-06405-w
  • Beijer D, Kim HJ, Guo L, et al. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight. 2021;6(14). doi: 10.1172/jci.insight.148363
  • Gui X, Luo F, Li Y, et al. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun. 2019;10(1):2006. doi: 10.1038/s41467-019-09902-7
  • Ryan VH, Perdikari TM, Naik MT, et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J. 2021;40(3):e105001. doi: 10.15252/embj.2020105001
  • Kim HJ, Mohassel P, Donkervoort S, et al. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun. 2022;13(1):2306. doi: 10.1038/s41467-022-30015-1
  • Lim L, Wei Y, Lu Y, et al. ALS-Causing mutations significantly perturb the self-assembly and interaction with Nucleic Acid of the intrinsically disordered Prion-like domain of TDP-43. PLoS Biol. 2016;14(1):e1002338. doi: 10.1371/journal.pbio.1002338
  • Guenther EL, Cao Q, Trinh H, et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat Struct Mol Biol. 2018;25(6):463–471. doi: 10.1038/s41594-018-0064-2
  • Chien H-M, Lee C-C, Huang JJ-T. The different faces of the TDP-43 Low-complexity domain: the formation of liquid droplets and amyloid fibrils. IJMS. 2021;22(15):8213. 10.3390/ijms22158213
  • Vishal SS, Wijegunawardana D, Salaikumaran MR, et al. Sequence determinants of TDP-43 Ribonucleoprotein condensate formation and axonal transport in neurons. Front Cell Dev Biol. 2022;10:876893. doi:10.3389/fcell.2022.876893
  • Ling S-C, Albuquerque CP, Han JS, et al. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci. 2010;107(30):13318–13323. doi: 10.1073/pnas.1008227107
  • Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol. 2014;10(6):337–348. doi: 10.1038/nrneurol.2014.78
  • Van Blitterswijk M, van Es MA, Hennekam EAM, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(17):3776–3784. doi: 10.1093/hmg/dds199
  • Shishkin S, Kovalev L, Pashintseva N, et al. Heterogeneous nuclear ribonucleoproteins involved in the functioning of telomeres in malignant cells. IJMS. 2019;20(3):745. doi: 10.3390/ijms20030745
  • Tsoi PS, Quan MD, Choi K-J, et al. Electrostatic modulation of hnRNPA1 low‐complexity domain liquid–liquid phase separation and aggregation. Protein Sci. 2021;30(7):1408–1417. doi: 10.1002/pro.4108
  • Rohl CA, Strauss CEM, Misura KMS, et al. Protein structure prediction using Rosetta. Methods Enzymol. 2004;383:66–93. doi: 10.1016/S0076-6879(04)83004-0
  • Murray DT, Zhou X, Kato M, et al. Structural characterization of the D290V mutation site in hnRNPA2 low-complexity–domain polymers. Proc Natl Acad Sci. 2018;115(42). doi: 10.1073/pnas.1806174115
  • Ryan VH, Dignon GL, Zerze GH, et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol Cell. 2018;69(3):465–479.e7. doi: 10.1016/j.molcel.2017.12.022
  • Li RZ, Hou J, Wei Y, et al. hnRNPDL extensively regulates transcription and alternative splicing. Gene. 2019;687:125–134. doi: 10.1016/j.gene.2018.11.026
  • Vieira NM, Naslavsky MS, Licinio L, et al. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum Mol Genet. 2014;23(15):4103–4110. doi: 10.1093/hmg/ddu127
  • Gopal PP, Nirschl JJ, Klinman E, et al. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc Natl Acad Sci. 114, (2017). 12 10.1073/pnas.1614462114
  • Zhu L, Xu M, Yang M, et al. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel β-structure and induces TDP-43 redistribution. Hum Mol Genet. 2014;23(25):6863–6877. doi: 10.1093/hmg/ddu409
  • Prasad A, Bharathi V, Sivalingam V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25. doi:10.3389/fnmol.2019.00025
  • Koehler LC, Grese ZR, Bastos ACS, et al. TDP-43 oligomerization and phase separation properties are necessary for autoregulation. Front Neurosci. 2022;16:818655. doi: 10.3389/fnins.2022.818655
  • Konopka A, Whelan DR, Jamali MS, et al. Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol Neurodegener. 2020;15(1):51. doi: 10.1186/s13024-020-00386-4
  • Shelkovnikova TA, Robinson HK, Southcombe JA, et al. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Hum Mol Genet. 2014;23(19):5211–5226. doi: 10.1093/hmg/ddu243
  • Niaki AG, Sarkar J, Cai X, et al. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-Linked FUS mutations. Molecular Cell. 2020;77(1):82–94.e4. doi: 10.1016/j.molcel.2019.09.022
  • Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135(8):851–867. doi: 10.1007/s00439-016-1683-5
  • Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163(1):123–133. doi: 10.1016/j.cell.2015.09.015