710
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Prion forensics: a multidisciplinary approach to investigate CWD at an illegal deer carcass disposal site

, , , , , , , , , , , & show all
Pages 72-86 | Received 15 Jan 2024, Accepted 10 Apr 2024, Published online: 26 Apr 2024

References

  • Ubelaker DH. A history of forensic anthropology. Am J Phys Anthropol. 2018;165(4):915–923. doi: 10.1002/ajpa.23306
  • Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature. 1985;314(6006):67–73. doi: 10.1038/314067a0
  • Jeffreys AJ, Wilson V, Thein SL. Individual-specific ‘fingerprints’ of human DNA. Nature. 1985;316(6023):76–79. doi: 10.1038/316076a0
  • Pérez-Martínez C, Prieto-Bonete G, Pérez-Cárceles MD, et al. Usefulness of protein analysis for detecting pathologies in bone remains. Forensic Sci Int. 2016;258:68–73. doi: 10.1016/j.forsciint.2015.11.009
  • Haines AM, Webb SL, Wallace JR. Conservation forensics: the intersection of wildlife crime, forensics, and conservation. In: Underkoffler S Adams H, editors Wildlife biodiversity conservation: multidisciplinary and forensic approaches. Cham: Springer International Publishing; 2021. pp. 125–146.
  • Viner TC, Kagan RA. Chapter 2 - forensic wildlife pathology. In: Terio K, McAloose D, and Leger J, editors Pathology of wildlife and zoo animals. Cambridge, MA: Academic Press; 2018. pp. 21–40.
  • Parry NMA, Stoll A. The rise of veterinary forensics. Forensic Sci Int. 2020;306:110069. doi: 10.1016/j.forsciint.2019.110069
  • Smart U, Cihlar JC, Budowle B. International wildlife trafficking: A perspective on the challenges and potential forensic genetics solutions. Forensic Sci Int Genet. 2021;54:102551. doi: 10.1016/j.fsigen.2021.102551
  • Ciavaglia SA, Tobe SS, Donnellan SC, et al. Molecular identification of python species: development and validation of a novel assay for forensic investigations. Forensic Sci Int Genet. 2015;16:64–70. doi: 10.1016/j.fsigen.2014.12.002
  • Cui W, Jin X, Guo Y, et al. Development and validation of a novel five-dye short tandem repeat panel for forensic identification of 11 species. Front Genet. 2020;11. doi: 10.3389/fgene.2020.01005
  • Miller WL, David Walter W. Can genetic assignment tests provide insight on the influence of captive regression on the epizootiology of chronic wasting disease? Evol Appl. 2020;13(4):715–726. doi: 10.1111/eva.12895
  • Williams ES, Young S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16:89–98. doi: 10.7589/0090-3558-16.1.89
  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–144. doi: 10.1126/science.6801762
  • Henderson DM, Davenport KA, Haley NJ, et al. Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J Gen Virol. 2015;96(1):210–219. doi: 10.1099/vir.0.069906-0
  • Tennant JM, Li M, Henderson DM, et al. Shedding and stability of CWD prion seeding activity in cervid feces. PLOS ONE. 2020;15(3):e0227094. doi: 10.1371/journal.pone.0227094
  • Miller MW, Williams ES, Hobbs NT, et al. Environmental sources of prion transmission in mule deer. Emerg Infect Dis. 2004;10(6):1003–1006. doi: 10.3201/eid1006.040010
  • Yuan Q, Telling G, Bartelt-Hunt SL, et al. Dehydration of prions on environmentally relevant surfaces protects them from inactivation by freezing and thawing. J Virol. 2018;92(8):92. doi: 10.1128/JVI.02191-17
  • Yuan Q, Eckland T, Telling G, et al. Mitigation of prion infectivity and conversion capacity by a simulated natural process—repeated cycles of drying and wetting. PLOS Pathog. 2015;11(2):e1004638. doi: 10.1371/journal.ppat.1004638
  • Somerville RA, Fernie K, Smith A, et al. BSE infectivity survives burial for five years with only limited spread. Arch Virol. 2019;164(4):1135–1145. doi: 10.1007/s00705-019-04154-8
  • Georgsson G, Sigurdarson S, Brown P. Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J Gen Virol. 2006;87(12):3737–3740. doi: 10.1099/vir.0.82011-0
  • Denkers ND, Hoover CE, Davenport KA, et al. Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease. PLOS ONE. 2020;15(8):e0237410. doi: 10.1371/journal.pone.0237410
  • La Sharr K, Hildebrand E, Carstensen M, et al. Surveillance and management of chronic wasting disease in Minnesota. Minnesota Department of Natural Resources; 2019. https://files.dnr.state.mn.us/wildlife/research/summaries/2019/ungulates/2019ug007.pdf.
  • Haley NJ, Richt JA. Evolution of diagnostic tests for chronic wasting disease, a naturally occurring prion disease of cervids. Pathogens. 2017;6(3):35. doi: 10.3390/pathogens6030035
  • Wilham JM, Orrú CD, Bessen RA, et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLOS Pathog. 2010;6(12):e1001217. doi: 10.1371/journal.ppat.1001217
  • Atarashi R, Moore RA, Sim VL, et al. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods. 2007;4(8):645–650. doi: 10.1038/nmeth1066
  • Orrú CD, Groveman BR, Hughson AG, et al. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. MBio. 2015;6(1):6. doi: 10.1128/mBio.02451-14
  • McNulty E, Nalls AV, Mellentine S, et al. Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool. PLOS ONE. 2019;14(5):e0216621. doi: 10.1371/journal.pone.0216621
  • Picasso-Risso C, Schwabenlander MD, Rowden G, et al. Assessment of Real-Time Quaking-Induced Conversion (RT-QuIC) assay, immunohistochemistry and ELISA for detection of chronic wasting disease under field conditions in white-tailed deer: a Bayesian approach. Pathogens. 2022;11(5):11. doi: 10.3390/pathogens11050489
  • Li M, Schwabenlander MD, Rowden GR, et al. RT-QuIC detection of CWD prion seeding activity in white-tailed deer muscle tissues. Sci Rep. 2021;11(1):16759. doi: 10.1038/s41598-021-96127-8
  • Cramm M, Schmitz M, Karch A, et al. Stability and reproducibility underscore utility of RT-QuIC for diagnosis of creutzfeldt-jakob disease. Mol Neurobiol. 2016;53(3):1896–1904. doi: 10.1007/s12035-015-9133-2
  • Moško T, Galušková S, Matěj R, et al. Detection of Prions in brain homogenates and CSF samples using a second-generation RT-QuIC assay: a useful tool for retrospective analysis of archived samples. Pathogens. 2021;10(6):750. doi: 10.3390/pathogens10060750
  • Soto P, Bravo-Risi F, Benavente R, et al. Identification of chronic wasting disease prions in decaying tongue tissues from exhumed white-tailed deer. mSphere. 2023;8(5):e0027223. doi: 10.1128/msphere.00272-23
  • Miller WL, Edson J, Pietrandrea P, et al. Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus). BMC Genet. 2019;20(1):49. doi: 10.1186/s12863-019-0750-z
  • Severinghaus CW. Tooth development and wear as criteria of age in white-tailed deer. J Wildl Manage. 1949;13(2):195–216. doi: 10.2307/3796089
  • Guynn ST, Moore WF, Guynn DC Jr. A key for aging white-tailed deer using the tooth replacement and wear technique. Report No.: lGP 1093. Clemson (SC): Clemson Cooperative Extension; 2020. https://lgpress.clemson.edu/publication/a-key-for-aging-white-tailed-deer-using-the-tooth-replacement-and-wear-technique/
  • Purdue JR. Epiphyseal closure in white-tailed deer. J Wildl Manage. 1983;47(4):1207–1213. doi: 10.2307/3808195
  • Lewis JE. Identifying sword marks on bone: criteria for distinguishing between cut marks made by different classes of bladed weapons. J Archaeol Sci. 2008;35(7):2001–2008. doi: 10.1016/j.jas.2008.01.016
  • Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–1405. doi: 10.1093/bioinformatics/btn129
  • Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94. doi: 10.1186/1471-2156-11-94
  • Bonhotal J. Natural rendering: a natural solution for mortality and butcher waste. Small Farm Q. 2003; 17.
  • Vantassel SM, King MA Wildlife carcass disposal. Report No: 19. U.S. Department of Agriculture: Animal and Plant Health Inspection Service; 2018. https://digitalcommons.unl.edu/nwrcwdmts/19/
  • Seelig DM, Mason GL, Telling GC, et al. Pathogenesis of chronic wasting disease in cervidized transgenic mice. Am J Pathol. 2010;176(6):2785–2797. doi: 10.2353/ajpath.2010.090710
  • Yuan Q, Rowden G, Wolf TM, et al. Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces. Environ Int. 2022;166:107347. doi: 10.1016/j.envint.2022.107347
  • Pritzkow S, Morales R, Camacho M, et al. Uptake, retention, and excretion of infectious prions by experimentally exposed earthworms. Emerg Infect Dis. 2021;27:3151–3154. doi: 10.3201/eid2712.204236
  • Schwabenlander MD, Rowden GR, Li M, et al. Comparison of chronic wasting disease detection methods and procedures: implications for free-ranging white-tailed deer (Odocoileus virginianus) surveillance and management. J Wildl Dis. 2022;58(1). doi: 10.7589/JWD-D-21-00033
  • Sola D, Artigas R, Mediano DR, et al. Novel polymorphisms in the prion protein gene (PRNP) and stability of the resultant prion protein in different horse breeds. Vet Res. 2023;54(1):94. doi: 10.1186/s13567-023-01211-8
  • Haley NJ, Merrett K, Buros Stein A, et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLOS ONE. 2019;14(12):e0224342. doi: 10.1371/journal.pone.0224342
  • Otero A, Duque Velasquez C, McKenzie D, et al. Emergence of CWD strains. Cell Tissue Res. 2023;392(1):135–148. doi: 10.1007/s00441-022-03688-9
  • Mathiason CK, Hays SA, Powers J, et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLOS ONE. 2009;4(6):e5916. doi: 10.1371/journal.pone.0005916
  • U.S. Department of Agriculture. Chronic wasting disease program standards. Report No.: 9 CFR parts 55 and 81. Animal and Plant Health Inspection Service Veterinary Services; 2019. https://www.aphis.usda.gov/animal_health/animal_diseases/cwd/downloads/cwd-program-standards.pdf
  • Nichols TA, Pulford B, Wyckoff AC, et al. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. Prion. 2009;3(3):171–183. doi: 10.4161/pri.3.3.9819
  • Nichols TA, Fischer JW, Spraker TR, et al. CWD prions remain infectious after passage through the digestive system of coyotes (Canis latrans). Prion. 2015;9(5):367–375. doi: 10.1080/19336896.2015.1086061
  • VerCauteren KC, Pilon JL, Nash PB, et al. Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos). PLOS ONE. 2012;7(10):e45774. doi: 10.1371/journal.pone.0045774
  • Moore SJ, Carlson CM, Schneider JR, et al. Increased attack rates and decreased incubation periods in raccoons with chronic wasting disease passaged through Meadow Voles. Emerg Infect Dis. 2022;28(4):793–801. doi: 10.3201/eid2804.210271
  • Turner WC, Kausrud KL, Beyer W, et al. Lethal exposure: an integrated approach to pathogen transmission via environmental reservoirs. Sci Rep. 2016;6(1):27311. doi: 10.1038/srep27311
  • Centers for Disease Control and Prevention. Biosafety in microbiological and biomedical laboratories. Meechan PJ, Potts J editors. 6th. National Institutes of Health; 2020. https://www.cdc.gov/labs/pdf/SF__19_308133-A_BMBL6_00-BOOK-WEB-final-3.pdf
  • Vaiman D, Osta R, Mercier D, et al. Characterization of five new bovine dinucleotide repeats. Anim Genet. 1992;23(6):537–541. doi: 10.1111/j.1365-2052.1992.tb00175.x
  • Buchanan FC, Crawford AM. Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim Genet. 1993;24(2):145. doi: 10.1111/j.1365-2052.1993.tb00269.x
  • Bishop MD, Kappes SM, Keele JW, et al. A genetic linkage map for cattle. Genetics. 1994;136(2):619–639. doi: 10.1093/genetics/136.2.619
  • DeWoody JA, Honeycutt RL, Skow LC. Microsatellite markers in white-tailed deer. J Heredity. 1995;86(4):317–319. doi: 10.1093/oxfordjournals.jhered.a111593
  • Wilson GA, Strobeck C, Wu L, et al. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol. 1997;6(7):697–699. doi: 10.1046/j.1365-294X.1997.00237.x
  • Jones KC, Levine KF, Banks JD. DNA-based genetic markers in black-tailed and mule deer for forensic applications. Calif Fish Game. 2000;86:115–126.
  • Holland MM, Parson W. GeneMarker® HID: a reliable software tool for the analysis of forensic STR data. J Forensic Sci. 2011;56(1):29–35. doi: 10.1111/j.1556-4029.2010.01565.x
  • Alberto F. MsatAllele_1.0: an R package to visualize the binning of microsatellite alleles. J Heredity. 2009;100(3):394–397. doi: 10.1093/jhered/esn110
  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2022. https://www.R-project.org/
  • Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour. 2010;10(3):564–567. doi: 10.1111/j.1755-0998.2010.02847.x
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959. doi: 10.1093/genetics/155.2.945
  • Earl DA, Vonholt BM. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the evanno method. Conserv Genet Resour. 2012;4(2):359–361. doi: 10.1007/s12686-011-9548-7
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x
  • Kopelman NM, Mayzel J, Jakobsson M, et al. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15(5):1179–1191. doi: 10.1111/1755-0998.12387
  • Jombart T, Collins C A tutorial for Discriminant Analysis of Principal Components (DAPC) using adegenet 2.1. 0. Imperial College, London, United Kingdom; 2017. https://raw.githubusercontent.com/thibautjombart/adegenet/master/tutorials/tutorial-dapc.pdf