2,809
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

BLT2 expression improves skin integrity and protects from alterations caused by hyperglycemia in type 2 diabetes

ORCID Icon & ORCID Icon
Article: e1267078 | Received 01 Nov 2016, Accepted 28 Nov 2016, Published online: 14 Dec 2016

References

  • World Health Statistics, WHO. 2015. [accessed 2016 Oct 3]. www.who.int/gho/publications/world_health_statistics/2015/en/
  • Paneni F, Costantino S, Cosentino F. Molecular mechanism of vascular dysfunction and cardiovascular biomarkers in type 2 diabetes. Cardiovasc Diagn Ther 2014; 4(4):324-32; PMID:25276618
  • Fonseca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes Care 2009; 32(Suppl 2):S151-6; PMID:19875543; https://doi.org/10.2337/dc09-S301
  • Muller IS, de Grauw WJ, van Gerwen WH, Bartelink ML, van Den Hoogen HJ, Rutten GE. Foot ulceration and lower limb amputation in type 2 diabetic patients in dutch primary health care. Diabetes Care 2002; 25(3):570-4; PMID:11874949; https://doi.org/10.2337/diacare.25.3.570
  • Kamohara M, Takasaki J, Matsumoto M, Saito T, Ohishi T, Ishii H, Furuichi K. Molecular cloning and characterization of another leukotriene B4 receptor. J Biol Chem 2000; 275(35):27000-4; PMID:10889186
  • Yokomizo T, Kato K, Hagiya H, Izumi T, Shimizu T. Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2. J Biol Chem 2001; 276(15):12454-9; PMID:11278893; https://doi.org/10.1074/jbc.M011361200
  • Liu M, Saeki K, Matsunobu T, Okuno T, Koga T, Sugimoto Y, Yokoyama C, Nakamizo S, Kabashima K, Narumiya S, et al. 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. J Exp Med 2014; 211(6):1063-78; PMID:24821912; https://doi.org/10.1084/jem.20132063
  • Iizuka Y, Yokomizo T, Terawaki K, Komine M, Tamaki K, Shimizu T. Characterization of a mouse second leukotriene B4 receptor, mBLT2: BLT2-dependent ERK activation and cell migration of primary mouse keratinocytes. J Biol Chem 2005; 280(26):24816-23; PMID:15866883; https://doi.org/10.1074/jbc.M413257200
  • Yoo MH, Song H, Woo CH, Kim H, Kim JH. Role of the BLT2, a leukotriene B4 receptor, in Ras transformation. Oncogene 2004; 23(57):9259-68; PMID:15489890
  • Hennig R, Osman T, Esposito I, Giese N, Rao SM, Ding XZ, Tong WG, Büchler MW, Yokomizo T, Friess H, et al. BLT2 is expressed in PanINs, IPMNs, pancreatic cancer and stimulates tumour cell proliferation. Br J Cancer 2008; 99(7):1064-73; PMID:18781173; https://doi.org/10.1038/sj.bjc.6604655
  • Shao WH, Del Prete A, Bock CB, Haribabu B. Targeted disruption of leukotriene B4 receptors BLT1 and BLT2: a critical role for BLT1 in collagen-induced arthritis in mice. J Immunol 2006; 176(10):6254-61; PMID:16670336; https://doi.org/10.4049/jimmunol.176.10.6254
  • Cho KJ, Seo JM, Shin Y, Yoo MH, Park CS, Lee SH, Chang YS, Cho SH, Kim JH. Blockade of airway inflammation and hyperresponsiveness by inhibition of BLT2, a low-affinity leukotriene B4 receptor. Am J Respir Cell Mol Biol 2010; 42(3):294-303; PMID:19448154; https://doi.org/10.1165/rcmb.2008-0445OC
  • Matsunaga Y, Fukuyama S, Okuno T, Sasaki F, Matsunobu T, Asai Y, Matsumoto K, Saeki K, Oike M, Sadamura Y, et al. Leukotriene B4 receptor BLT2 negatively regulates allergic airway eosinophilia. FASEB J 2013; 27(8):3306-14; PMID:23603839; https://doi.org/10.1096/fj.12-217000
  • Iizuka Y, Okuno T, Saeki K, Uozaki H, Okada S, Misaka T, Sato T, Toh H, Fukayama M, Takeda N, et al. Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J 2010; 24(12):4678-90; PMID:20667973; https://doi.org/10.1096/fj.10-165050
  • Ishii Y, Saeki K, Liu M, Sasaki F, Koga T, Kitajima K, Meno C, Okuno T, Yokomizo T. Leukotriene B4 receptor type 2 (BLT2) enhances skin barrier function by regulating tight junction proteins. FASEB J 2016; 30(2):933-47; PMID:26527063; https://doi.org/10.1096/fj.15-279653
  • Chiba T, Nakahara T, Hashimoto-Hachiya A, Yokomizo T, Uchi H, Furue M. The leukotriene B4 receptor BLT2 protects barrier function via actin polymerization with phosphorylation of myosin phosphatase target subunit 1 in human keratinocytes. Exp Dermatol 2016; 25(7):532-6; PMID:26896822; https://doi.org/10.1111/exd.12976
  • Luo L, Tanaka R, Kanazawa S, Lu F, Hayashi A, Yokomizo T, Mizuno H. A synthetic leukotriene B4 receptor type 2 agonist accelerates the cutaneous wound healing process in diabetic rats by indirect stimulation of fibroblasts and direct stimulation of keratinocytes. J Diabetes Complications 2016; S1056-8727(16):30541-4
  • Wikramanayake TC, Stojadinovic O, Tomic-Canic M. Epidermal Differentiation in Barrier Maintenance and Wound Healing. Adv Wound Care (New Rochelle) 2014; 3(3):272-280; PMID:24669361; https://doi.org/10.1089/wound.2013.0503
  • Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, Katagiri K, Kinashi T, Tanaka T, Miyasaka M, et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 2003; 4(7):694-701; PMID:12778172; https://doi.org/10.1038/ni943
  • Terawaki K, Yokomizo T, Nagase T, Toda A, Taniguchi M, Hashizume K, Yagi T, Shimizu T. Absence of leukotriene B4 receptor 1 confers resistance to airway hyperresponsiveness and Th2-type immune responses. J Immunol 2005; 175(7):4217-25; PMID:16177061; https://doi.org/10.4049/jimmunol.175.7.4217
  • Matsunobu T, Okuno T, Yokoyama C, Yokomizo T. Thromboxane A synthase-independent production of 12-hydroxyheptadecatrienoic acid, a BLT2 ligand. J Lipid Res 2013; 54(11):2979-87; PMID:24009185; https://doi.org/10.1194/jlr.M037754
  • Sasaki F, Okuno T, Saeki K, Min L, Onohara N, Kato H, Shimizu T, Yokomizo T. A high-affinity monoclonal antibody against the FLAG tag useful for G-protein-coupled receptor study. Anal Biochem 2012; 425(2):157-65; PMID:22465329; https://doi.org/10.1016/j.ab.2012.03.014
  • Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, Gallo RL, Borkowski AW, Yamasaki K, Leung DY, et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol 2013; 133(4):988-98; PMID:23223142; https://doi.org/10.1038/jid.2012.437
  • Winzell MS, Ahrén B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004; 53(Suppl 3):S215-9; PMID:15561913; https://doi.org/10.2337/diabetes.53.suppl_3.S215
  • King AJ. The use of animal models in diabetes research. Br J Pharmacol 2012; 166(3):877-94; PMID:22352879; https://doi.org/10.1111/j.1476-5381.2012.01911.x
  • Gilbert ER, Fu Z, Liu D. Development of a nongenetic mouse model of type 2 diabetes. Exp Diabetes Res 2011; 2011:416254; PMID:22164157; https://doi.org/10.1155/2011/416254
  • Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O, Johnson A, Chung H, Mayoral R, Maris M, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med 2015; 21(3):239-47; PMID:25706874
  • Fouda MM, Abdel-Mohsen AM, Ebaid H, Hassan I, Al-Tamimi J, Abdel-Rahman RM, Metwalli A, Alhazza I, Rady A, El-Faham A, et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. Int J Biol Macromol 2016; 89:582-91; PMID:27174907; https://doi.org/10.1016/j.ijbiomac.2016.05.021
  • Desposito D, Chollet C1, Taveau C, Descamps V, Alhenc-Gelas F, Roussel R, Bouby N, Waeckel L. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond) 2016; 130(1):45-56; PMID:26443866; https://doi.org/10.1042/CS20150295
  • Kämpfer H, Schmidt R, Geisslinger G, Pfeilschifter J, Frank S. Wound inflammation in diabetic ob/ob mice: functional coupling of prostaglandin biosynthesis to cyclooxygenase-1 activity in diabetes-impaired wound healing. Diabetes 2005; 54(5):1543-51; https://doi.org/10.2337/diabetes.54.5.1543
  • Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 1995; 46:223-34; PMID:7598459; https://doi.org/10.1146/annurev.med.46.1.223
  • List EO, Berryman DE, Palmer AJ, Qiu L, Sankaran S, Kohn DT, Kelder B, Okada S, Kopchick JJ. Analysis of mouse skin reveals proteins that are altered in a diet-induced diabetic state: a new method for detection of type 2 diabetes. Proteomics 2007; 7(7):1140-9; PMID:17390296; https://doi.org/10.1002/pmic.200600641
  • Spravchikov N, Sizyakov G, Gartsbein M, Accili D, Tennenbaum T, Wertheimer E. Glucose effects on skin keratinocytes: implications for diabetes skin complications. Diabetes 2001; 50(7):1627-35; PMID:11423485; https://doi.org/10.2337/diabetes.50.7.1627
  • Terashi H, Izumi K, Deveci M, Rhodes LM, Marcelo CL. High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus. Int Wound J 2005; 2(4):298-304; PMID:16618316; https://doi.org/10.1111/j.1742-4801.2005.00148.x
  • Lan CC, Wu CS, Huang SM, Wu IH, Chen GS. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 2013; 62(7):2530-8; PMID:23423570; https://doi.org/10.2337/db12-1714
  • Reed MJ, Scribner KA. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obes Metab 1999; 1(2):75-86; PMID:11220515; https://doi.org/10.1046/j.1463-1326.1999.00014.x
  • Salpea KD, Maubaret CG, Kathagen A, Ken-Dror G, Gilroy DW, Humphries SE. The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts. PLoS One 2013; 8(9):e73756; PMID:24086293; https://doi.org/10.1371/journal.pone.0073756
  • Rozlomiy VL, Markov AG. Effect of interleukin-1β on the expression of tight junction proteins in the culture of HaCaT keratinocytes. Bull Exp Biol Med 2010; 149(3):280-3; PMID:21246082; https://doi.org/10.1007/s10517-010-0927-y
  • Tsai WC, Liang FC, Cheng JW, Lin LP, Chang SC, Chen HH, Pang JH. High glucose concentration up-regulates the expression of matrix metalloproteinase-9 and -13 in tendon cells. BMC Musculoskelet Disord 2013; 14:255; PMID:23981230; https://doi.org/10.1186/1471-2474-14-255
  • Lan CC, Liu IH, Fang AH, Wen CH, Wu CS. Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol 2008; 159(5):1103-15; PMID:18717678
  • Pan F, Guo R, Cheng W, Chai L, Wang W, Cao C, Li S. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes. Drug Des Devel Ther 2015; 9:4779-91; PMID:26355894
  • Pavan B, Capuzzo A2, Forlani G. High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp Eye Res 2014; 120:50-4; PMID:24345371; https://doi.org/10.1016/j.exer.2013.12.006
  • Qing Q, Zhang S, Chen Y, Li R, Mao H, Chen Q. High glucose-induced intestinal epithelial barrier damage is aggravated by syndecan-1 destruction and heparanase overexpression. J Cell Mol Med 2015; 19(6):1366-74; PMID:25702768; https://doi.org/10.1111/jcmm.12523
  • Breton J, Woolf D, Young P, Chabot-Fletcher M. Human keratinocytes lack the components to produce leukotriene B4. J Invest Dermatol 1996; 106(1):162-7; PMID:8592068; https://doi.org/10.1111/1523-1747.ep12329890
  • Allombert-Blaise C, Tamiji S, Mortier L, Fauvel H, Tual M, Delaporte E, Piette F, DeLassale EM, Formstecher P, Marchetti P, et al. Terminal differentiation of human epidermal keratinocytes involves mitochondria- and caspase-dependent cell death pathway. Cell Death Differ 2003; 10(7):850-2; PMID:12815468; https://doi.org/10.1038/sj.cdd.4401245
  • Wikramanayake TC, Stojadinovic O, Tomic-Canic M. Epidermal differentiation in barrier maintenance and wound healing. Adv Wound Care (New Rochelle) 2014; 3(3):272-280; PMID:24669361; https://doi.org/10.1089/wound.2013.0503
  • Thyssen JP, Linneberg A, Carlsen BC, Johansen JD, Engkilde K, Hansen T, Pociot F, Pedersen O, Meldgaard M, Szecsi PB, et al. A possible association between a dysfunctional skin barrier (filaggrin null-mutation status) and diabetes: a cross-sectional study. BMJ Open 2011; 1(1):e000062; PMID:22021744; https://doi.org/10.1136/bmjopen-2011-000062
  • Nakahara T, Mitoma C, Hashimoto-Hachiya A, Takahara M, Tsuji G, Uchi H, Yan X, Hachisuka J, Chiba T, Esaki H, et al. Antioxidant Opuntia ficus-indica Extract Activates AHR-\NRF2 Signaling and Upregulates Filaggrin and Loricrin Expression in Human Keratinocytes. J Med Food 2015; 18(10):1143-9; PMID:26061570; https://doi.org/10.1089/jmf.2014.3396
  • Wertheimer E, Spravchikov N, Trebicz M, Gartsbein M, Accili D, Avinoah I, Nofeh-Moses S, Sizyakov G, Tennenbaum T. The regulation of skin proliferation and differentiation in the IR null mouse: implications for skin complications of diabetes. Endocrinology 2001; 142(3):1234-41; PMID:11181540
  • Presland RB, Kuechle MK, Lewis SP, Fleckman P, Dale BA. Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp Cell Res 2001; 270(2):199-213; PMID:11640884; https://doi.org/10.1006/excr.2001.5348
  • Leguina-Ruzzi A, Pereira J, Pereira-Flores K, Valderas JP, Mezzano D, Velarde V, Sáez CG. Increased RhoA/Rho-Kinase Activity and Markers of Endothelial Dysfunction in Young Adult Subjects with Metabolic Syndrome. Metab Syndr Relat Disord 2015; 13(9):373-80; PMID:26512756; https://doi.org/10.1089/met.2015.0061