987
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

Approximate entropy: a promising tool to understand the hidden electrical activity of fruit

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2195236 | Received 03 Jan 2023, Accepted 22 Mar 2023, Published online: 28 Mar 2023

References

  • Burdon-Sanderson J. Note on the electrical phenomena which accompany stimulation of leaf of Dionea muscipula. Proc R Soc. 1873;21:495–8.
  • Sheperd VA. From semi-conductors to the rhythms of sensitive plants: the research of J. C. Bose. Cell Mol Biol. 2005;51:607–619.
  • Ladeynova M, Mudrilov M, Berezina E, Kior D, Grinberg M, Brilkina A, Sukhov, V, and Vodeneev V. Spatial and temporal dynamics of electrical and photosynthetic activity and the content of phytohormones induced by local stimulation of pea plants. Plants. 2020;9(10):1–14.
  • Farmer EE, Gao Y-Q, Lenzoni G, et al. Wound- and mechanostimulated electrical signals control hormone responses. New Phytol. 2020;227(4):1037–1050.
  • Choi W-G, Miller G, Wallace I, et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 2017;90(4):698–707.
  • Sukhova E, Sukhov V. Electrical signals, plant tolerance to actions of stressors, and programmed cell death: is interaction possible? Plants. 2021;10(8):1704.
  • Sai K, Sood N, Saini I. Classification of various nutrient deficiencies in tomato plants through electrophysiological signal decomposition and sample space reduction. Plant Physiol Biochem. 2022;186:266–278.
  • Simmi FZ, Dallagnol LJ, Ferreira AS, et al. Electrome alterations in a plant-pathogen system: toward early diagnosis. Bioelectrochemistry. 2020;133:107493.
  • Tran D, Camps C. Early diagnosis of iron deficiency in commercial tomato crop using electrical signals. Front Sustain Food Syst. 2021;5:631529.
  • Eschrich W, Fromm J, Evert RF. Transmission of electric signals in sieve tubes of zucchini plants. Bot Acta. 1988;101(4):327–331.
  • Parise AG, de Toledo GRA, Oliveira TFC, et al. Do plants pay attention? A possible phenomenological-empirical approach. Prog Biophys Mol Biol. 2022;173:11–23.
  • Reissig GN, Galviz Fajardo YC, Parise AG, et al. Experimental evidence for fruit memory and its applications to post-harvest physiology and technology: an overview. In: Progress in Botany.Berlin, Heidelberg:Springer; 2022. DOI:10.1007/124_2022_59
  • Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WIREs Cogn. Sci. 2021;13(2):e1578.
  • de Toledo GRA, Parise AG, Simmi FZ, et al. Plant electrome: the electrical dimension of plant life. Theor Exp Plant Physiol. 2019;31(1):21–46. DOI:10.1007/s40626-019-00145-x
  • Reissig GN, Oliveira TFC, Oliveira RP, et al. Fruit herbivory alters plant electrome: evidence for fruit-shoot long-distance electrical signaling in tomato plants. Front Sustain Food Syst. 2021;5:657401.
  • Souza GM, Lüttge U. Stability as a phenomenon emergent from plasticity-complexity-diversity in eco-physiology. In: Lüttge U, and Beyschlag W, editors. Progress in Botany. Vol. 76, Switzerland: Springer; 2015. p. 438.
  • Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol. 2017;8:684.
  • Vodeneev VA, Katicheva LA, Sukhov VS. Electrical signals in higher plants: mechanisms of generation and propagation. Biophysics. 2016;61(3):505–512.
  • Zimmermann MR, Maischak H, Mithöfer A, et al. System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol. 2009;149(3):1593–1600.
  • Bellandi A, Papp D, Breakspear A, et al. Diffusion and bulk flow of amino acids mediate calcium waves in plants. Sci Adv. 2022;8(42):eabo6693.
  • Huber AE, Bauerle TL. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge.J. Exp Bot. 2016;67(7):2063–2079.
  • Saraiva GFR, Ferreira AS, Souza GM. Osmotic stress decreases complexity underlying the electrophysiological dynamic in soybean. Plant Biol. 2017;19(5):702–708.
  • Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos an Interdiscip. J Nonlinear Sci. 1995;5(1):110–117.
  • Souza GM, Pincus SM, Monteiro JAF. The complexity-stability hypothesis in plant gas exchange under water deficit. Braz J Plant Physiol. 2005;17(4):363–373.
  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423. 782.
  • Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297–2301.
  • Zhao M-G, Tian Q-Y, Zhang W-H. Ethylene activates a plasma membrane Ca2+-permeable channel in tobacco suspension cells. New Phytol. 2007;174(3):507–515.
  • Zhang H-M, van Helden DF, McCurdy DW, et al. Plasma membrane Ca2+-permeable channels are differentially regulated by ethylene and hydrogen peroxide to generate persistent plumes of elevated cytosolic Ca2+ during transfer cell trans-differentiation. Plant Cell Physiol. 2015;56(9):1711–1720.
  • Althiab-Almasaud R, Chen Y, Maza E, et al. Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. Plant J. 2021;107(3):893–908.
  • Decros G, Baldet P, Beauvoit B, et al. Get the balance right: rOS homeostasis and redox signalling in fruit. Front Plant Sci. 2019;10:1091.
  • Schertl P, Braun H-P. Respiratory electron transfer pathways in plant mitochondria. Front Plant Sci. 2014;5:163.
  • Sukhov V, Sukhova E, Gromova E, et al. The electrical signal-induced systemic photosynthetic response is accompanied by changes in the photochemical reflectance index in pea. Funct Plant Biol. 2019;46(4):328–338.
  • Prasanna V, Prabha TN, Tharanathan RN. Fruit ripening phenomena–an overview. Crit Rev Food Sci Nutr. 2007;47(1):1–19.
  • Batista-Silva W, Nascimento VL, Medeiros DB, et al. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Front Plant Sci. 2018;9:1689.
  • Forlani S, Masiero S, Mizzotti C. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. J Exp Bot. 2019;70(11):2993–3006.
  • Wang D, Yeats TH, Uluisik S, et al. Fruit softening: revisiting the role of pectin. Trends Plant Sci. 2018;23(4):302–310.
  • Volkov AG, Shtessel YB. Electrical signal propagation within and between tomato plants. Bioelectrochemistry. 2018;124:195–205.
  • Canales J, Henriquez-Valencia C, Brauchi S. The integration of electrical signals originating in the root of vascular plants. Front Plant Sci. 2018;8:2173.
  • Damineli DSC, Portes MT, Feijó JA. Electrifying rhythms in plant cells. Curr Opin Cell Biol. 2022;77:102113.
  • Mihalache G, Peres CI, Bodale I, et al. Tomato crop performances under chemical nutrients monitored by electric signal. Agronomy. 2020;10(12):1915.
  • Do Amaral MN, Souza GM. The challenge to translate OMICS data to whole plant physiology: the context matters. Front Plant Sci. 2017;8:2146.
  • Ji W, Gao X, Xu B, et al. Target recognition method of green pepper harvesting robot based on manifold ranking. Comput Electron Agric. 2020;177:105663.
  • Reissig GN, Oliveira TFC, Costa AVL, et al. Machine learning for automatic classification of tomato ripening stages using electrophysiological recordings. Front Sustain Food Syst. 2021;5:696829.
  • De Loof A. The cell’s self-generated “electrome”: the biophysical essence of the immaterial dimension of life? Commun Integr Biol 2016;1:e1197446.
  • Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J Physiol. 1994;266(4 Pt 2):H1643-56. DOI:10.1152/ajpheart.1994.266.4.H1643. PMID: 8184944.
  • Liu M., Pirrello J., Chervin C., Roustan J-P., and Bouzayen, M. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 2015;169:2380–2390. DOI:10.1104/pp.15.01361