150
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Effects of fast and slow-wilting soybean genotypes on fall armyworm (Spodoptera frugiperda) growth and development

, , , , & ORCID Icon
Article: 2354421 | Received 06 Mar 2024, Accepted 03 May 2024, Published online: 19 May 2024

References

  • Food and Agriculture Organization of the United Nations. FAO-UN. Fao.org. Food and Agriculture Organization of the United Nations; 2024. https://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/
  • Fried HG, Narayanan S, Fallen B, et al. Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield, water use efficiency, and root traits. PLoS One. 2019;14(2):e0212700. doi: 10.1371/journal.pone.0212700
  • American Soybean Association. Annual soy stats results. American Soybean Association; 2022. https://soygrowers.com/education-resources/publications/soy-stats/
  • Bray EA. Responses to abiotic stresses. Biochem Molecul Biol Plants; 2000. p. 1158–13.
  • Heatherly LG. Drought stress and irrigation effects on germination of harvested soybean seed. Crop sci. 1993;33(4):777–781. doi: 10.2135/cropsci1993.0011183X003300040029x
  • Purcell LC, Specht JE. Physiological traits for ameliorating drought stress. Soybeans: Improvement, Prod Uses. 2004;16:569–620.
  • Dornbos DL Jr, Mullen RE. Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Can J Plant Sci. 1991;71(2):373–383. doi: 10.4141/cjps91-052
  • Ku YS, Au-Yeung WK, Yung YL, et al. Drought stress and tolerance in soybean. A Comprehensive Survey Int Soybean Res—Genetic, Physiol, Agron Nitrog Relationships. 2013:209–237.
  • Bellaloui N, Gillen AM, Mengistu A, et al. Responses of nitrogen metabolism and seed nutrition to drought stress in soybean genotypes differing in slow-wilting phenotype. Front Plant Sci. 2013;4:498. doi: 10.3389/fpls.2013.00498
  • Maleki A, Naderi A, Naseri R, et al. Physiological performance of soybean cultivars under drought stress. Bullet Environ, Pharmacol Life Sci. 2013;2(6):38–44.
  • Wallander S, Hrozencik A, Aillery M. Some irrigation organizations rely on formal drought plans. Amber Waves: The Economics Of Food, Farming, Natural Resources, And Rural America; 2022.
  • Chamarthi SK, Kaler AS, Abdel-Haleem H, et al. Identification and confirmation of loci associated with canopy wilting in soybean using genome-wide association mapping. Front Plant Sci. 2021;12:698116. doi: 10.3389/fpls.2021.698116
  • Hatfield JL, Dold C. Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci. 2019;10:429990. doi: 10.3389/fpls.2019.00103
  • Van Vliet MT, Jones ER, Flörke M, et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ Res Lett. 2021;16(2):024020. doi: 10.1088/1748-9326/abbfc3
  • Sinclair TR, Purcell LC, Sneller CH. Crop transformation and the challenge to increase yield potential. Trends Plant Sci. 2004;9(2):70–75. doi: 10.1016/j.tplants.2003.12.008
  • Chen J, Chang SX, Anyia AO. The physiology and stability of leaf carbon isotope discrimination as a measure of water‐use efficiency in barley on the Canadian prairies. J Agron Crop Sci. 2011;197(1):1–11. doi: 10.1111/j.1439-037X.2010.00440.x
  • Fletcher AL, Sinclair TR, Allen LH Jr. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’and commercial soybean. Environ Exp Bot. 2007;61(2):145–151. doi: 10.1016/j.envexpbot.2007.05.004
  • King CA, Purcell LC, Brye KR. Differential wilting among soybean genotypes in response to water deficit. Crop sci. 2009;49(1):290–298. doi: 10.2135/cropsci2008.04.0219
  • Kunert K, Vorster BJ. In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity? J Exp Bot. 2020;71(2):457–460. doi: 10.1093/jxb/erz235
  • Devi MJ, Sinclair TR. Fixation drought tolerance of the slow‐wilting soybean PI 471938. Crop sci. 2013;53(5):2072–2078. doi: 10.2135/cropsci2013.02.0095
  • Ries LL, Purcell LC, Carter TE Jr, et al. Physiological traits contributing to differential canopy wilting in soybean under drought. Crop sci. 2012;52(1):272–281. doi: 10.2135/cropsci2011.05.0278
  • Charlson DV, Bhatnagar S, King CA, et al. Polygenic inheritance of canopy wilting in soybean [glycine max (L.) merr.]. Theor Appl Genet. 2009;119(4):587–594. doi: 10.1007/s00122-009-1068-4
  • Sinclair TR, Messina CD, Beatty A, et al. Assessment across the United States of the benefits of altered soybean drought traits. Agronomy J. 2010;102(2):475–482. doi: 10.2134/agronj2009.0195
  • Ye H, Song L, Schapaugh WT, et al. The importance of slow canopy wilting in drought tolerance in soybean. J Exp Bot. 2020;71(2):642–652. doi: 10.1093/jxb/erz150
  • Hamann E, Blevins C, Franks SJ, et al. Climate change alters plant–herbivore interactions. New Phytol. 2021;229(4):1894–1910. doi: 10.1111/nph.17036
  • Kuczyk J, Müller C, Fischer K. Plant-mediated indirect effects of climate change on an insect herbivore. Basic Appl Ecol. 2021;53:100–113. doi: 10.1016/j.baae.2021.03.009
  • Rouault G, Candau JN, Lieutier F, et al. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals Forest Sci. 2006;63(6):613–624. doi: 10.1051/forest:2006044
  • Roy BA, Güsewell S, Harte J. Response of plant pathogens and herbivores to a warming experiment. Ecol. 2004;85(9):2570–2581. doi: 10.1890/03-0182
  • Staley JT, Mortimer SR, Masters GJ, et al. Drought stress differentially affects leaf‐mining species. Ecol Entomol. 2006;31(5):460–469. doi: 10.1111/j.1365-2311.2006.00808.x
  • Gely C, Laurance SG, Stork NE. How do herbivorous insects respond to drought stress in trees? Biol Rev. 2020;95(2):434–448.
  • Kaur J, Kariyat R. Role of trichomes in plant stress biology. Evolut Ecol Plant-Herbivore Interact; 2020. p. 15–35.
  • Balakrishnan D, Bateman N, Kariyat RR. Rice physical defenses and their role against insect herbivores. Planta. 2024;259(5):110. doi: 10.1007/s00425-024-04381-7
  • Kariyat RR, Hardison SB, De Moraes CM, et al. Plant spines deter herbivory by restricting caterpillar movement. Biol Lett. 2017;13(5):20170176.
  • Gélin U, Charles-Dominique T, Davies TJ, et al. The evolutionary history of spines – a Cenozoic arms race with mammals. bioRxiv. 2023:2023–02.
  • Kaur I, Kariyat RR. Eating barbed wire: direct and indirect defensive roles of non‐glandular trichomes. Plant Cell Environ. 2020;43(9):2015–2018. doi: 10.1111/pce.13828
  • Watts S, Kariyat R. Picking sides: feeding on the abaxial leaf surface is costly for caterpillars. Planta. 2021;253(4):1–6. doi: 10.1007/s00425-021-03592-6
  • Watts S, Kariyat R, Buckley T. Morphological characterization of trichomes shows enormous variation in shape, density and dimensions across the leaves of 14 Solanum species. AoB Plants. 2021;13(6):lab071. doi: 10.1093/aobpla/plab071
  • Grinnan R, Carter TE, Johnson MT. Effects of drought, temperature, herbivory, and genotype on plant–insect interactions in soybean (glycine max). Arthropod Plant Interact. 2013;7(2):201–215. doi: 10.1007/s11829-012-9234-z
  • Hruska AJ. Fall armyworm (Spodoptera frugiperda) management by smallholders. CABI Rev. 2019;2019:1–11. doi: 10.1079/PAVSNNR201914043
  • Kenis M, Benelli G, Biondi A, et al. Invasiveness, biology, ecology, and management of the fall armyworm. Spodoptera frugiperda; 2022.
  • Yan XR, Wang ZY, Feng SQ, et al. Impact of temperature change on the fall armyworm, Spodoptera frugiperda under global climate change. Insects. 2022;13(11):981. doi: 10.3390/insects13110981
  • Purdue University. Fall armyworms. Purdue University - College of Agriculture; 2023. https://ag.purdue.edu/department/entm/extension/field-crops-ipm/corn/fall-armyworms.html
  • Mota-Sanchez D, Wise JC. Arthropod pesticide resistance database (APRD). Michigan State University 2021. 2024. https://www.pesticideresistance.org
  • Udayakumar A, Shivalingaswamy TM, Bakthavatsalam N. Legume-based intercropping for the management of fall armyworm, Spodoptera frugiperda L in maize. J Plant Dis Protect. 2021;128(3):775–779. doi: 10.1007/s41348-020-00401-2
  • Wu K, Jiang C, Zhou S, et al. Optimizing arrangement and density in maize and alfalfa intercropping and the reduced incidence of the invasive fall armyworm (Spodoptera frugiperda) in southern China. Field Crops Res. 2022;287:108637. doi: 10.1016/j.fcr.2022.108637
  • Singh S, Kariyat RR. Exposure to polyphenol-rich purple corn pericarp extract restricts fall armyworm (Spodoptera frugiperda) growth. Plant Signal Behav. 2020;15(9):1784545. doi: 10.1080/15592324.2020.1784545
  • Chavana J, Singh S, Vazquez A, et al. Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits. Sci Rep. 2021;11(1):6634.
  • Chamarthi SK, Kaler AS, Abdel‐Haleem H, et al. Identification of genomic regions associated with the plasticity of carbon 13 ratio in soybean. Plant Genome. 2023;16(1):e20284. doi: 10.1002/tpg2.20284
  • Silva TRFB, Almeida ACDS, Moura TDL, et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Scientiarum Agron. 2016;38:165–170. doi: 10.4025/actasciagron.v38i2.27956
  • Souza BH, Costa EN, Ribeiro ZA, et al. Soybean leaf age and plant stage influence expression of resistance to velvetbean caterpillar and fall armyworm. Chemoecol. 2021;31(6):377–390. doi: 10.1007/s00049-021-00360-6
  • Mai VC, Tran NT, Nguyen DS. The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid. Arthropod Plant Interact. 2016;10(4):283–292. doi: 10.1007/s11829-016-9424-1
  • Neyla T, Moriles-Miller J, Gustafson K, et al. (PDF) Soybean Growth Stages. Research Gate; 2019. https://www.researchgate.net/publication/331683847_Soybean_Growth_Stages
  • Amaliah N, Zubaidah S, Kuswantoro H. Trichomes and stomata diversity in soybean (Glycine max L. Merill) lines. In: IOP Conference Series: Earth and Environmental Science; Malang, Indonesia; (Vol. 276). IOP Publishing; 2019. p. 012025
  • Romero B, Dillon FM, Zavala JA. Different soybean cultivars respond differentially to damage in a herbivore-specific manner and decreas herbivore performance. Arthropod Plant Interact. 2020;14(1):89–99. doi: 10.1007/s11829-019-09730-y
  • Abebe AT, Adewale S, Chigeza G, et al. Diallel analysis of soybean (glycine max L.) for biomass yield and root characteristics under low phosphorus soil conditions in Western Ethiopia. PLoS One. 2023;18(2):e0281075. doi: 10.1371/journal.pone.0281075
  • Mattson WJ, Haack RA. The role of drought in outbreaks of plant-eating insects. BioScience. 1987;37(2):110–118. doi: 10.2307/1310365
  • Carnicer J, Stefanescu C, Vives‐Ingla M, et al. Phenotypic biomarkers of climatic impacts on declining insect populations: a key role for decadal drought, thermal buffering and amplification effects and host plant dynamics. J Animal Ecol. 2019;88(3):376–391. doi: 10.1111/1365-2656.12933
  • Chen JJ, Sun Y, Kopp K, et al. Effects of water availability on leaf trichome density and plant growth and development of Shepherdia× utahensis. Front Plant Sci. 2022;13:855858. doi: 10.3389/fpls.2022.855858
  • Herbivory Variability Network*†, Robinson ML, Hahn PG, et al. Plant size, latitude, and phylogeny explain within-population variability in herbivory. Sci. 2023;382(6671):679–683. doi: 10.1126/science.adh8830
  • Naganna R, Jethva DM, Bhut JB, et al. Present status of new invasive pest fall armyworm, Spodoptera frugiperda in India: a review. J Entomol Zool Stud. 2020;8(2):150–156.