135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A two-dimensional lateral interaction crash risk evaluation model considering imbalanced data

, ORCID Icon &

Reference

  • Altché, F., & Fortelle, A. (2017). An LSTM network for highway trajectory prediction. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 353–359). IEEE.
  • Barr, L., & Najm, W. (2001). Crash problem characteristics for the intelligent vehicle initiative. In Transportation Research Board 80th Annual Meeting January 7–11, 2001 Washington, D.C.
  • Burkhard, G., Vos, S., Munzinger, N., Enders, E., & Schramm, D. (2018). Requirements on driving dynamics in autonomous driving with regard to motion and comfort. In 18. Internationales Stuttgarter Symposium: Automobil-und Motorentechnik (pp. 683–697). Springer Fachmedien Wiesbaden.
  • Chae, H., Lee, M., & Yi, K. (2017). Probabilistic prediction based automated driving motion planning algorithm for lane change. In 2017 17th International Conference on Control, Automation and Systems (ICCAS) (pp. 1640–1645). IEEE. doi:10.23919/ICCAS.2017.8204250
  • Das, A., Khan, N., & Ahmed, M. M. (2020). Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques. Accident; Analysis and Prevention, 142, 105578. doi:10.1016/j.aap.2020.105578
  • Dogan, E., Yousfi, E., Bellet, T., Tijus, C., & Guillaume, A. (2021). Manual takeover after highly automated driving: Influence of budget time and lane change assist on takeover performance. In Proceedings of the 32nd European Conference on Cognitive Ergonomics (pp. 1–6).
  • Endsley, R. (2019). Situation awareness in future autonomous vehicles: Beware of the unexpected. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018) Volume VII: Ergonomics in Design, Design for All, Activity Theories for Work Analysis and Design, Affective Design 20 (pp. 303–309). Springer International Publishing.
  • Gowda, T., You, W., Lignos, C., & May, J. (2021). Macro-average: rare types are important too. arXiv preprint arXiv:2104.05700.
  • Haque, N., Hadiuzzaman, M., Rahman, F., & Siam, M. R. K. (2020). Real-time motion trajectory based head-on crash probability estimation on two-lane undivided highway. Journal of Transportation Safety & Security, 12(10), 1312–1337. doi:10.1080/19439962.2019.1597001
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735
  • Hydén, C. (1987). The development of a method for traffic safety evaluation: The Swedish Traffic Conflicts Technique. Journal of Transportation Engineering, 106(1), 67–81.
  • Imprialou, M., Quddus, M., Pitfield, D. E., & Lord, D. (2016). Re-visiting crash–speed relationships: A new perspective in crash modelling. Accident; Analysis and Prevention, 86, 173–185. doi:10.1016/j.aap.2015.10.001
  • Khan, N., & Ahmed, M. (2022). A novel deep learning approach to predict crash severity in adverse weather on rural mountainous freeway. Journal of Transportation Safety & Security, 14, 1–31. doi:10.1080/19439962.2022.2129891
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L. (2018). The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 2118–2125). IEEE. doi:10.1109/ITSC.2018.8569552
  • LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Handwritten digit recognition with a back-propagation network. Advances in Neural Information Processing Systems (NIPS 1989), Denver, CO (Vol. 2). Morgan Kaufmann.
  • Li, L., Peng, X., Wang, F.-Y., Cao, D., & Li, L. (2018). A situation-aware collision avoidance strategy for car-following. IEEE/CAA Journal of Automatica Sinica, 5(5), 1012–1016. doi:10.1109/JAS.2018.7511198
  • Li, L., Zhao, W., Xu, C., Wang, C., Chen, Q., & Dai, S. (2021). Lane-change intention inference based on RNN for autonomous driving on highways. IEEE Transactions on Vehicular Technology, 70(6), 5499–5510. doi:10.1109/TVT.2021.3079263
  • Lin, Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2980–2988).
  • Mahmud, S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research, 41(4), 153–163. doi:10.1016/j.iatssr.2017.02.001
  • Olsen, C., Lee, S. E., Wierwille, W., & Goodman, M. J. (2002). Analysis of distribution, frequency, and duration of naturalistic lane changes. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 46, No. 22, pp. 1789–1793). SAGE Publications. doi:10.1177/154193120204602203
  • Park, H., Oh, C., Moon, J., & Kim, S. (2018). Development of a lane change risk index using vehicle trajectory data. Accident; Analysis and Prevention, 110, 1–8. doi:10.1016/j.aap.2017.10.015
  • Peng, C., & Xu, C. (2022). Combined variable speed limit and lane change guidance for secondary crash prevention using distributed deep reinforcement learning. Journal of Transportation Safety & Security, 14(12), 2166–2191. doi:10.1080/19439962.2021.2011810
  • Plug, C., Xia, J. C., & Caulfield, C. (2011). Spatial and temporal visualisation techniques for crash analysis. Accident; Analysis and Prevention, 43(6), 1937–1946. doi:10.1016/j.aap.2011.05.007
  • Qin, J., He, R., Liu, Y., Deng, W., & Zhang, S. (2021). Research on lateral active collision avoidance algorithms for intelligent vehicles. In Proceedings of China SAE Congress 2019: Selected Papers (pp. 527–541). Springer Singapore.
  • Rodemerk, C., Habenicht, S., Weitzel, A., Winner, H., & Schmitt, T. (2012). Development of a general criticality criterion for the risk estimation of driving situations and its application to a maneuver-based lane change assistance system. In 2012 IEEE Intelligent Vehicles Symposium (pp. 264–269). IEEE.
  • Scheel, O., Nagaraja, N. S., Schwarz, L., Navab, N., & Tombari, F. (2019). Attention-based lane change prediction. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8655–8661). IEEE. doi:10.1109/ICRA.2019.8793648
  • Sen, B., Smith, J. D., & Najm, W. G. (2003). Analysis of lane change crashes (No. HS-809 571). United States National Highway Traffic Safety Administration.
  • Shangguan, Q., Fu, T., Wang, J., Fang, S., & Fu, L. (2022). A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. Accident; Analysis and Prevention, 164, 106500. doi:10.1016/j.aap.2021.106500
  • Shi, Q., & Zhang, H. (2021). An improved learning-based LSTM approach for lane change intention prediction subject to imbalanced data. Transportation Research Part C: Emerging Technologies, 133, 103414. doi:10.1016/j.trc.2021.103414
  • Tang, L., Wang, H., Zhang, W., Mei, Z., & Li, L. (2020). Driver lane change intention recognition of intelligent vehicle based on long short-term memory network. IEEE Access 8, 136898–136905. doi:10.1109/ACCESS.2020.3011550
  • Uno, N., Iida, Y., Itsubo, S., & Yasuhara, S. (2002). A microscopic analysis of traffic conflict caused by lane-changing vehicle at weaving section. In Proceedings of the 13th Mini-EURO Conference-Handling Uncertainty in the Analysis of Traffic and Transportation Systems, Bari, Italy (pp. 10–13).
  • Wang, P. (2015). Design of high-speed railway turnouts: Theory and applications. Academic Press.
  • Wang, Y., Zhang, D., Liu, Y., Dai, B., & Lee, L. H. (2019). Enhancing transportation systems via deep learning: A survey. Transportation Research Part C: Emerging Technologies, 99, 144–163. doi:10.1016/j.trc.2018.12.004
  • Wei, C., Wang, Y., Asakura, Y., & Ma, L. (2021). A nonlinear programing model for collision-free lane-change trajectory planning based on vehicle-to-vehicle communication. Journal of Transportation Safety & Security, 13(9), 936–956. doi:10.1080/19439962.2019.1701165
  • Wu, J., Wen, H., & Qi, W. (2020). A new method of temporal and spatial risk estimation for lane change considering conventional recognition defects. Accident; Analysis and Prevention, 148, 105796. doi:10.1016/j.aap.2020.105796
  • Xing, Y., Lv, C., Wang, H., Cao, D., & Velenis, E. (2020). An ensemble deep learning approach for driver lane change intention inference. Transportation Research Part C: Emerging Technologies, 115, 102615. doi:10.1016/j.trc.2020.102615
  • Xue, Q., Wang, K., Lu, J. J., Xing, Y., Gu, X., & Zhang, M. (2022). An improved risk estimation model of lane change using naturalistic vehicle trajectories. Journal of Transportation Safety & Security, 14, 1–24. doi:10.1080/19439962.2022.2147612
  • Yan, Y., Chen, M., Shyu, M. L., & Chen, S. C. (2015). Deep learning for imbalanced multimedia data classification. In 2015 IEEE International Symposium on Multimedia (ISM) (pp. 483–488). IEEE. doi:10.1109/ISM.2015.126
  • Yu, R., Wang, Y., Zou, Z., & Wang, L. (2020). Convolutional neural networks with refined loss functions for the real-time crash risk analysis. Transportation Research Part C: Emerging Technologies, 119, 102740. doi:10.1016/j.trc.2020.102740
  • Zhang, Y., Lin, Q., Wang, J., Verwer, S., & Dolan, J. M. (2018). Lane-change intention estimation for car-following control in autonomous driving. IEEE Transactions on Intelligent Vehicles, 3(3), 276–286. doi:10.1109/TIV.2018.2843178
  • Zhang, Y., Xu, Q., Wang, J., Wu, K., Zheng, Z., & Lu, K. (2020). A Learning-based discretionary lane-change decision-making model with driving style awareness. arXiv preprint arXiv:2010.09533.
  • Zheng, Z. (2014). Recent developments and research needs in modeling lane changing. Transportation Research Part B: Methodological, 60, 16–32. doi:10.1016/j.trb.2013.11.009
  • Zhu, B., Yan, S., Zhao, J., & Deng, W. (2018). Personalized lane-change assistance system with driver behavior identification. IEEE Transactions on Vehicular Technology, 67(11), 10293–10306. doi:10.1109/TVT.2018.2867541
  • Ziebinski, A., Cupek, R., Grzechca, D., & Chruszczyk, L. (2017). Review of advanced driver assistance systems (ADAS). In AIP Conference Proceedings (Vol. 1906, No. 1, p. 120002). AIP Publishing LLC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.