229
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the spatiotemporal heterogeneity of freeway secondary crashes using GTWR model

, , , &

References

  • Arash, K. B., & Ahmed, M. (2023). Does random slope hierarchical modeling always outperform random intercept counterpart? Accounting for unobserved heterogeneity in a real-time empirical analysis of critical crash occurrence. Journal of Transportation Safety & Security, 1–38.
  • Bao, J., Liu, P., Yu, H., & Xu, C. (2017). Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas. Accident; Analysis and Prevention, 106, 358–369. doi:10.1016/j.aap.2017.06.012
  • Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (2010). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
  • Burak, Y. K., Ezgi, E., & Alver, Y. (2023). An integrated solution to identify pedestrian-vehicle accident prone locations: GIS-based multicriteria decision approach. Journal of Transportation Safety & Security, 15(2), 137–176.
  • Cai, Q., Abdel-Aty, M., Lee, J., & Huang, H. (2019). Integrating macro and micro level safety analyses: A Bayesian approach incorporating spatial interaction. Transportmetrica A: Transport Science, 15(2), 285–306. doi:10.1080/23249935.2018.1471752
  • Cardozo, O. D., García-Palomares, J. C., & Gutiérrez, J. (2012). Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34, 548–558. doi:10.1016/j.apgeog.2012.01.005
  • Chen, S., Saeed, T. U., Alqadhi, S. D., & Labi, S. (2019). Safety impacts of pavement surface roughness at two-lane and multi-lane highways: Accounting for heterogeneity and seemingly unrelated correlation across crash severities. Transportmetrica A: Transport Science, 15(1), 18–33. doi:10.1080/23249935.2017.1378281
  • Cheng, Z., Zhang, L., Zhang, Y., Wang, S., & Huang, W. (2022). A systematic approach for evaluating spatiotemporal characteristics of traffic violations and crashes at road intersections: An empirical study. Transportmetrica A: Transport Science, 1–23. doi:10.1080/23249935.2022.2060368
  • China News Network. (2021, December 27). China official: Up to now China’s motor vehicle ownership 393 million total and incremental are the world’s first. https://m.gmw.cn/baijia/2021-12/27/1302738477.html
  • Chu, H. J., Huang, B., & Lin, C. Y. (2015). Modeling the spatio-temporal heterogeneity in the pm10-pm2.5 relationship. Atmospheric Environment, 102, 176–182. doi:10.1016/j.atmosenv.2014.11.062
  • Chung, Y. (2013). Identifying primary and secondary crashes from spatiotemporal crash impact analysis. Transportation Research Record: Journal of the Transportation Research Board, 2386(1), 62–71. doi:10.3141/2386-08
  • Dong, C., Yang, Q., Cui, D., & Xie, K. (2019). Accounting for heterogeneity in traffic crash prediction: Exploring the usage of a dynamic state-space approach. Transportmetrica A: Transport Science, 15(2), 1321–1338. doi:10.1080/23249935.2019.1594446
  • Feng, M., Wang, X., & Li, Y. (2023). Analyzing single-vehicle and multi-vehicle freeway crashes with unobserved heterogeneity. Journal of Transportation Safety & Security, 15(1), 59–81. doi:10.1080/19439962.2021.2020945
  • Hirunyanitiwattana, W., & Mattingly, S. P. (2006). Identifying secondary crash characteristics for California highway system. In Transportation Research Board Meeting.
  • Huang, B., & Wang, J. (2020). GTWRv1_1_20_May2020.zip. https://www.researchgate.net/publication/339567248_GTWRv1_1_20_May2020zip
  • Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383–401. doi:10.1080/13658810802672469
  • Hurvich, C. M., Simonoff, J. S., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. Journal of the Royal Statistical Society Series B: Statistical Methodology, 60(2), 271–293. doi:10.1111/1467-9868.00125
  • Imprialou, M. I. M., Orfanou, F. P., Vlahogianni, E. I., & Karlaftis, M. G. (2014). Methods for defining spatiotemporal influence areas and secondary incident detection in freeways. Journal of Transportation Engineering, 140(1), 70–80. doi:10.1061/(ASCE)TE.1943-5436.0000612
  • Karlaftis, M. G., Latoski, S. P., Richards, N. J., & Sinha, K. C. (1999). Its impacts on safety and traffic management: An investigation of secondary crash causes. ITS. ITS Journal - Intelligent Transportation Systems Journal, 5(1), 39–52. doi:10.1080/10248079908903756
  • Khattak, A., Wang, X., & Zhang, H. (2012). Incident management integration tool: Dynamically predicting incident durations, secondary incident occurrence and incident delays. IET Intelligent Transport Systems, 6(2), 204–214. doi:10.1049/iet-its.2011.0013
  • Kim, K. (2020). Delay cycle analysis of finite-buffer M/G/1 queues and its application to the analysis of M/G/1 priority queues with finite and infinite buffers. Performance Evaluation, 143(8), 102133. doi:10.1016/j.peva.2020.102133
  • Kitali, A. E., Alluri, P., Sando, T., Haule, H., Kidando, E., & Lentz, R. (2018). Likelihood estimation of secondary crashes using Bayesian complementary log-log model. Accident; Analysis and Prevention, 119, 58–67. doi:10.1016/j.aap.2018.07.003
  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Wasserman, W. (2004). Applied linear regression models (Vol. 4, pp. 563–568). McGraw-Hill/Irwin.
  • Li, P., & Abdel-Aty, M. (2022). A hybrid machine learning model for predicting real-time secondary crash likelihood. Accident; Analysis and Prevention, 165, 106504. doi:10.1016/j.aap.2021.106504
  • Li, Z., Chen, X., Ci, Y., Chen, C., & Zhang, G. (2019). A hierarchical Bayesian spatiotemporal random parameters approach for alcohol/drug impaired-driving crash frequency analysis. Analytic Methods in Accident Research, 21, 44–61. doi:10.1016/j.amar.2019.01.002
  • Liu, J., Hainen, A., Li, X., Nie, Q., & Nambisan, S. (2019). Pedestrian injury severity in motor vehicle crashes: An integrated spatio-temporal modeling approach. Accident; Analysis and Prevention, 132, 105272. doi:10.1016/j.aap.2019.105272
  • Liu, J., Li, X., & Khattak, A. J. (2020). An integrated spatio-temporal approach to examine the consequences of driving under the influence (dui) in crashes. Accident; Analysis and Prevention, 146, 105742. doi:10.1016/j.aap.2020.105742
  • Ma, L., Zhang, S., Yan, X., & Wei, C. (2019). A hurdle finite mixture lognormal crash rate estimation model for addressing heterogeneous characteristics of influential factors. Journal of Transportation Safety & Security, 11(5), 443–463. doi:10.1080/19439962.2017.1419524
  • Mishra, S., Golias, M., Sarker, A., & Naimi, A. (2016). Effect of primary and secondary crashes: Identification, visualization, and prediction (No. CFIRE 09-05).
  • Mohammadnazar, A., Mahdinia, I., Ahmad, N., Khattak, A. J., & Liu, J. (2021). Understanding how relationships between crash frequency and correlates vary for multilane rural highways: Estimating geographically and temporally weighted regression models. Accident; Analysis and Prevention, 157(4), 106146. doi:10.1016/j.aap.2021.106146
  • Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. doi:10.2307/2332142
  • Pang, J., Krathaus, A., Benedyk, I., Ahmed, S., & Ch.Anastasopoulos, P. (2022). A temporal instability analysis of environmental factors affecting accident occurrences during snow events: The random parameters hazard-based duration model with means and variances heterogeneity. Analytic Methods in Accident Research, 34, 100215. doi:10.1016/j.amar.2022.100215
  • Park, H., & Haghani, A. (2015). Optimal number and location of bluetooth sensors considering stochastic travel time prediction. Transportation Research Part C: Emerging Technologies, 55, 203–216. doi:10.1016/j.trc.2015.03.023
  • Park, H., & Haghani, A. (2016). Real-time prediction of secondary incident occurrences using vehicle probe data. Transportation Research Part C: Emerging Technologies, 70, 69–85. doi:10.1016/j.trc.2015.03.018
  • Peng, C., & Xu, C. (2022). Combined variable speed limit and lane change guidance for secondary crash prevention using distributed deep reinforcement learning. Journal of Transportation Safety & Security, 14(12), 2166–2191. doi:10.1080/19439962.2021.2011810
  • Raub, R. A. (1997a). Occurrence of secondary crashes on urban arterial roadways. Transportation Research Record: Journal of the Transportation Research Board, 1581(1), 53–58. doi:10.3141/1581-07
  • Raub, R. A. (1997b). Secondary crashes: An important component of roadway incident management. Transportation Quarterly, 51(3).
  • Salum, J. H., Kitali, A. E., Sando, T., & Alluri, P. (2021). Evaluating the impact of road rangers in preventing secondary crashes. Accident; Analysis and Prevention, 156, 106129. doi:10.1016/j.aap.2021.106129
  • Shin, K., & Washington, S. P. (2012). Empirical Bayes method in the study of traffic safety via heterogeneous negative multinomial model. Transportmetrica, 8(2), 131–147. doi:10.1080/18128601003680976
  • Son, S. O., Jeong, J., Park, S., & Park, J. (2020). Effects of advanced warning information systems on secondary crash risk under connected vehicle environment. Accident; Analysis and Prevention, 148(2), 105786. doi:10.1016/j.aap.2020.105786
  • Song, L., Li, Y., Fan, W., & Wu, P. (2020). Modeling pedestrian-injury severities in pedestrian-vehicle crashes considering spatiotemporal patterns: Insights from different hierarchical bayesian random-effects models. Analytic Methods in Accident Research, 28, 100137. doi:10.1016/j.amar.2020.100137
  • Vlahogianni, E. I., Karlaftis, M. G., & Orfanou, F. P. (2012). Modeling the effects of weather and traffic on the risk of secondary incidents. Journal of Intelligent Transportation Systems, 16(3), 109–117. doi:10.1080/15472450.2012.688384
  • Wang, J., Liu, B., Zhang, L., & Ragland, D. R. (2016). Modeling secondary accidents identified by traffic shock waves. Accident; Analysis and Prevention, 87, 141–147. doi:10.1016/j.aap.2015.11.031
  • Wang, J., Xie, W., Liu, B., Fang, S., & Ragland, D. R. (2016). Identification of freeway secondary accidents with traffic shock wave detected by loop detectors. Safety Science, 87, 195–201. doi:10.1016/j.ssci.2016.04.015
  • Weng, J., & Li, G. (2019). Exploring shipping accident contributory factors using association rules. Journal of Transportation Safety & Security, 11(1), 36–57. doi:10.1080/19439962.2017.1341440
  • Yan, X., He, J., Zhang, C., Liu, Z., Wang, C., & Qiao, B. (2021). Spatiotemporal instability analysis considering unobserved heterogeneity of crash-injury severities in adverse weather. Analytic Methods in Accident Research, 32, 100182. doi:10.1016/j.amar.2021.100182
  • Yang, H., Bartin, B., & Ozbay, K. (2014). Mining the characteristics of secondary crashes on highways. Journal of Transportation Engineering, 140(4), 04013024. doi:10.1061/(ASCE)TE.1943-5436.0000646
  • Yang, H., Ozbay, K., & Xie, K. (2014). Assessing the risk of secondary crashes on highways- sciencedirect. Journal of Safety Research, 49(6), 143–149. doi:10.1016/j.jsr.2014.03.007
  • Yang, H., Wang, Z., Xie, K., Ozbay, K., & Imprialou, M. (2018). Methodological evolution and frontiers of identifying, modeling and preventing secondary crashes on highways. Accident; Analysis and Prevention, 117, 40–54. doi:10.1016/j.aap.2018.04.001
  • Zeng, Q., Guo, Q., Wong, S. C., Wen, H., Huang, H., & Pei, X. (2019). Jointly modeling area-level crash rates by severity: A Bayesian multivariate random-parameters spatio-temporal Tobit regression. Transportmetrica A: Transport Science, 15(2), 1867–1884. doi:10.1080/23249935.2019.1652867
  • Zeng, Q., Wang, Q., Wang, F., & Sze, N. N. (2022). Revisiting spatial correlation in crash injury severity: A Bayesian generalized ordered probit model with Leroux conditional autoregressive prior. Transportmetrica A: Transport Science, 18(3), 1084–1102. doi:10.1080/23249935.2021.1922536
  • Zhan, C., Shen, L., Hadi, M. A., & Gan, A. (2008). Understanding the characteristics of secondary crashes on freeways. In Transportation Research Board Meeting (Vol. 8, p. 1835).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.