926
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The effect of covariates on Soil Organic Matter and pH variability: a digital soil mapping approach using random forest model

, , , , , , & show all
Pages 215-232 | Received 12 Nov 2022, Accepted 19 Jan 2024, Published online: 29 Jan 2024

References

  • Aboutayeb, R., B. El Yousfi, and O. El Gharras. 2020. “Impact of No-Till on Physicochemical Properties of Vertisols in Chaouia Region of Morocco.” Eurasian Journal of Soil Science (EJSS) 9 (2): 119–125. https://doi.org/10.18393/ejss.663502.
  • Asgari, N., S. Ayoubi, A. Jafari, and J. A. Demattê. 2020. “Incorporating environmental variables, remote and proximal sensing data for digital soil mapping of USDA soil great groups.” International Journal of Remote Sensing 41 (19): 7624–7648. https://doi.org/10.1080/01431161.2020.1763506.
  • Ashworth, A. J., F. L. Allen, D. D. Tyler, D. H. Pote, and M. J. Shipitalo. 2017. “Earthworm Populations are Affected from Long-Term Crop Sequences and Bio-Covers Under No-Tillage.” Pedobiologia 60:27–33. https://doi.org/10.1016/j.pedobi.2017.01.001.
  • Bai, Z., T. Caspari, M. R. Gonzalez, N. H. Batjes, P. Mäder, E. K. Bünemann, and Z. Tóth. 2018. “Effects of Agricultural Management Practices on Soil Quality: A Review of Long-Term Experiments for Europe and China.” Agriculture, Ecosystems & Environment 265:1–7. https://doi.org/10.1016/j.agee.2018.05.028.
  • Bhattacharyya, S. S., G. H. Ros, K. Furtak, H. M. Iqbal, and R. Parra-Saldívar. 2022. “Soil Carbon Sequestration–An Interplay Between Soil Microbial Community and Soil Organic Matter Dynamics.” Science of the Total Environment 815:152928. https://doi.org/10.1016/j.scitotenv.2022.152928.
  • Bot, A., and J. Benites. 2005. “The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production.” In FAO Soils Bulletin 80. Rome, Italy: Food and Agricultural Organization of the United Nations.
  • Bouasria, A., Y. Bouslihim, S. Gupta, R. Taghizadeh-Mehrjardi, and T. Hengl. 2023. “Predictive Performance of Machine Learning Model with Varying Sampling Designs, Sample Sizes, and Spatial Extents.” Ecological Informatics 78:102294. https://doi.org/10.1016/j.ecoinf.2023.102294.
  • Bouasria, A., K. Ibno Namr, A. Rahimi, and E. M. Ettachfini. 2021. “Geospatial Assessment of Soil Organic Matter Variability at Sidi Bennour District in Doukkala Plain in Morocco.” Journal of Ecological Engineering 22 (11): 120–130. https://doi.org/10.12911/22998993/142935.
  • Bouasria, A., K. Ibno Namr, A. Rahimi, E. M. Ettachfini, and B. Rerhou. 2022. “Evaluation of Landsat 8 Image Pansharpening in Estimating Soil Organic Matter Using Multiple Linear Regression and Artificial Neural Networks.” Geo-Spatial Information Science 25 (3): 353–364. https://doi.org/10.1080/10095020.2022.2026743.
  • Bouslihim, Y., A. Rochdi, R. Aboutayeb, N. El Amrani-Paaza, A. Miftah, and L. Hssaini. 2021. “Soil Aggregate Stability Mapping Using Remote Sensing and GIS-Based Machine Learning Technique.” Frontiers in Earth Science 9:748859. https://doi.org/10.3389/feart.2021.748859.
  • Bouslihim, Y., A. Rochdi, and N. E. A. Paaza. 2021. “Machine Learning Approaches for the Prediction of Soil Aggregate Stability.” Heliyon 7 (3): e06480. https://doi.org/10.1016/j.heliyon.2021.e06480.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45:5–32.
  • Bünemann, E. K., G. Bongiorno, Z. Bai, R. E. Creamer, G. De Deyn, R. de Goede, and L. Brussaard. 2018. “Soil quality–A critical review.” Soil Biology and Biochemistry 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030.
  • Chen, S., D. Arrouays, V. L. Mulder, L. Poggio, B. Minasny, P. Roudier, Z. Libohova, et al. 2022. “Digital Mapping of Soil Properties at a Broad Scale: A Review.” Geoderma 409:115567. https://doi.org/10.1016/j.geoderma.2021.115567.
  • Chen, L., C. Ren, L. Li, Y. Wang, B. Zhang, Z. Wang, and L. Li. 2019. “A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content.” ISPRS International Journal of Geo-Information 8 (4): 174. https://doi.org/10.3390/ijgi8040174.
  • Croft, H., J. M. Chen, N. J. Froelich, B. Chen, and R. M. Staebler. 2015. “Seasonal Controls of Canopy Chlorophyll Content on Forest Carbon Uptake: Implications for GPP Modeling.” Journal of Geophysical Research: Biogeosciences 120 (8): 1576–1586. https://doi.org/10.1002/2015JG002980.
  • Devkota, M., Y. Singh, Y. A. Yigezu, I. Bashour, R. Mussadek, and R. Mrabet. 2022. “Conservation Agriculture in the Drylands of the Middle East and North Africa (MENA) Region: Past Trend, Current Opportunities, Challenges and Future Outlook.” Advances in Agronomy 172:253–305. https://doi.org/10.1016/bs.agron.2021.11.001.
  • Dharumarajan, S., R. Hegde, and S. K. Singh. 2017. “Spatial Prediction of Major Soil Properties Using Random Forest Techniques-A Case Study in Semi-Arid Tropics of South India.” Geoderma Regional 10:154–162. https://doi.org/10.1016/j.geodrs.2017.07.005.
  • Doran, J. W., A. J. Jones, M. A. Arshad, and J. E. Gilley. 2018. Soil quality and soil erosion: determinants of soil quality and health, 17–36. CRC Press. https://doi.org/10.1201/9780203739266-2.
  • El-Mrini, S., R. Aboutayeb, K. Azim, and A. Zouhri. 2021. “Co-Composting Process Assessment of Three-Phase Olive Mill Pomace and Turkey Manure in Morocco.” Journal of Southwest Jiaotong University 56 (6): 764–778. https://doi.org/10.35741/issn.0258-2724.56.6.68.
  • Falahatkar, S., S. M. Hosseini, A. Salman Mahiny, S. Ayoubi, and S. Q. Wang. 2014. “Soil Organic Carbon Stock as Affected by Land Use/Cover Changes in the Humid Region of Northern Iran.” Journal of Mountain Science 11 (2): 507–518. https://doi.org/10.1007/s11629-013-2645-1.
  • Food and Agriculture Organization of the United Nations (FAO). 2019. Standard Operating Procedure for Soil Organic Carbon. Walkley-Black Method: Titration and Colorimetric Method. Retrieved from http://www.fao.org/publications/card/en/c/CA7471EN/.
  • Forkuor, G., O. K. Hounkpatin, G. Welp, and M. Thiel. 2017. “High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.” PloS One 12 (1): e0170478. https://doi.org/10.1371/journal.pone.0170478.
  • Garosi, Y., S. Ayoubi, M. Nussbaum, M. Sheklabadi, M. Nael, and I. Kimiaee. 2022. “Use of the Time Series and Multi-Temporal Features of Sentinel-1/2 Satellite Imagery to Predict Soil Inorganic and Organic Carbon in a Low-Relief Area with a Semi-Arid Environment.” International Journal of Remote Sensing 43 (18): 6856–6880. https://doi.org/10.1080/01431161.2022.2147037.
  • Genuer, R., and J. M. Poggi. 2020. “Random Forests.” In Random Forests with R, 33–55. Cham: Springer. https://doi.org/10.1007/978-3-030-56485-8_3.
  • Gholizadeh, A., L. Borůvka, M. M. Saberioon, J. Kozak, R. Vašát, and K. Němeček. 2015. “Comparing Different Data Preprocessing Methods for Monitoring Soil Heavy Metals Based on Soil Spectral Features.” Soil and Water Research 10 (4): 218–227. https://doi.org/10.17221/113/2015-SWR.
  • Hengl, T., J. Mendes de Jesus, G. B. M. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotić. 2017. “SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.” PloS One 12 (2): e0169748. https://doi.org/10.1371/journal.pone.0169748.
  • Hengl, T., M. A. Miller, J. Križan, K. D. Shepherd, A. Sila, M. Kilibarda, O. Antonijević, L. Glušica, A. Dobermann, S. M. Haefele. 2021. “African Soil Properties and Nutrients Mapped at 30 M Spatial Resolution Using Two-Scale Ensemble Machine Learning.” Scientific Reports 11 (1): 1–18. https://doi.org/10.1038/s41598-021-85639-y.
  • He, M., X. Xiong, L. Wang, D. Hou, N. S. Bolan, Y. S. Ok, and D. C. Tsang. 2021. “A Critical Review on Performance Indicators for Evaluating Soil Biota and Soil Health of Biochar-Amended Soils.” Journal of Hazardous Materials 414:125378. https://doi.org/10.1016/j.jhazmat.2021.125378.
  • Hock, W. K. 2012. Effect of pH on Pesticide Stability and Efficacy. Pesticide Safety Education Program (PSEP). Cornell University. http://psep.cce.cornell.edu/facts-slides-self/facts/gen-peapp-ph.aspx.
  • Hong, S., P. Gan, and A. Chen. 2019. “Environmental Controls on Soil pH in Planted Forest and Its Response to Nitrogen Deposition.” Environmental Research 172:159–165. https://doi.org/10.1016/j.envres.2019.02.020.
  • Houborg, R., and M. F. McCabe. 2018. “A Hybrid Training Approach for Leaf Area Index Estimation via Cubist and Random Forests Machine-Learning.” ISPRS Journal of Photogrammetry and Remote Sensing 135:173–188. https://doi.org/10.1016/j.isprsjprs.2017.10.004.
  • Hounkpatin, K. O., A. Y. Bossa, Y. Yira, M. A. Igue, and B. A. Sinsin. 2022. “Assessment of the Soil Fertility Status in Benin (West Africa)–Digital Soil Mapping Using Machine Learning.” Geoderma Regional 28:e00444. https://doi.org/10.1016/j.geodrs.2021.e00444.
  • John, K., Y. Bouslihim, A. Bouasria, R. Razouk, L. Hssaini, I. A. Isong, and G. Ambrose-Igho. 2022. “Assessing the Impact of Sampling Strategy in Random Forest-Based Predicting of Soil Nutrients: A Study Case from Northern Morocco.” Geocarto International 37 (26): 11209–11222. https://doi.org/10.1080/10106049.2022.2048091.
  • John, K., Y. Bouslihim, K. I. Ofem, L. Hssaini, R. Razouk, P. B. Okon, I. A. Isong, P. C. Agyeman, N. M. Kebonye, and C. Qin. 2022. “Do Model Choice and Sample Ratios Separately or Simultaneously Influence Soil Organic Matter Prediction?” International Soil & Water Conservation Research 10 (3): 470–486. https://doi.org/10.1016/j.iswcr.2021.11.003.
  • Karchegani, P. M., S. Ayoubi, M. R. Mosaddeghi, and N. Honarjoo. 2012. “Soil Organic Carbon Pools in Particle-Size Fractions as Affected by Slope Gradient and Land Use Change in Hilly Regions, Western Iran.” Journal of Mountain Science 9 (1): 87–95. https://doi.org/10.1007/s11629-012-2211-2.
  • Kursa, M. B., and W. R. Rudnicki. 2010. “Feature Selection with the Boruta Package.” Journal of Statistical Software 36 (11): 1–13. https://doi.org/10.18637/jss.v036.i11.
  • Lal, R. 2004. “Soil Carbon Sequestration Impacts on Global Climate Change and Food Security.” Science 304 (5677): 1623–1627. https://doi.org/10.1126/science.1097396.
  • Lamichhane, S., L. Kumar, and B. Wilson. 2019. “Digital Soil Mapping Algorithms and Covariates for Soil Organic Carbon Mapping and Their Implications: A Review.” Geoderma 352:395–413. https://doi.org/10.1016/j.geoderma.2019.05.031.
  • Laurent, C., M. N. Bravin, O. Crouzet, C. Pelosi, E. Tillard, P. Lecomte, and I. Lamy. 2020. “Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination.” Science of the Total Environment 709:135927. https://doi.org/10.1016/j.scitotenv.2019.135927.
  • Leifeld, J., M. Zimmermann, and J. Fuhrer. 2008. “Simulating Decomposition of Labile Soil Organic Carbon: Effects of pH.” Soil Biology and Biochemistry 40 (12): 2948–2951. https://doi.org/10.1016/j.soilbio.2008.08.019.
  • McCauley, A., C. Jones, and J. Jacobsen. 2009. “Soil pH and Organic Matter.” Nutrient Management Module 8 (2): 1–12.
  • Minasny, B., B. P. Malone, A. B. McBratney, D. A. Angers, D. Arrouays, A. Chambers, V. Chaplot, et al. 2017. “Soil carbon 4 per mille.” Geoderma 292:59–86. https://doi.org/10.1016/j.geoderma.2017.01.002.
  • Moussadek, R., R. Mrabet, R. Dahan, A. Zouahri, M. El Mourid, and E. V. Ranst. 2014. “Tillage System Affects Soil Organic Carbon Storage and Quality in Central Morocco.” Applied & Environmental Soil Science 2014:1–8. https://doi.org/10.1155/2014/654796.
  • Mrabet, R., R. Moussadek, A. Fadlaoui, and E. Van Ranst. 2012. “Conservation Agriculture in Dry Areas of Morocco.” Field Crops Research 132:84–94. https://doi.org/10.1016/j.fcr.2011.11.017.
  • Murphy, B. W. 2015. “Impact of Soil Organic Matter on Soil Properties—A Review with Emphasis on Australian Soils.” Soil Research 53 (6): 605–635. https://doi.org/10.1071/SR14246.
  • Neina, D. 2019. “The Role of Soil pH in Plant Nutrition and Soil Remediation.” Applied & Environmental Soil Science 2019:1–9. https://doi.org/10.1155/2019/5794869.
  • Obalum, S. E., G. U. Chibuike, S. Peth, and Y. Ouyang. 2017. “Soil organic matter as sole indicator of soil degradation.” Environmental Monitoring and Assessment 189 (4): 176. https://doi.org/10.1007/s10661-017-5881-y.
  • Poggio, L., L. M. De Sousa, N. H. Batjes, G. Heuvelink, B. Kempen, E. Ribeiro, and D. Rossiter. 2021. “SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty.” Soil 7 (1): 217–240. https://doi.org/10.5194/soil-7-217-2021.
  • Pouladi, N., A. B. Møller, S. Tabatabai, and M. H. Greve. 2019. “Mapping Soil Organic Matter Contents at Field Level with Cubist, Random Forest and Kriging.” Geoderma 342:85–92. https://doi.org/10.1016/j.geoderma.2019.02.019.
  • Ramcharan, A., T. Hengl, T. Nauman, C. Brungard, S. Waltman, S. Wills, and J. Thompson 2017. Soil Property and Class Maps of the Conterminous US at 100 Meter Spatial Resolution Based on a Compilation of National Soil Point Observations and Machine Learning. arXiv preprint arXiv:1705.08323.
  • R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Reddy, N. N., P. Chakraborty, S. Roy, K. Singh, B. Minasny, A. B. McBratney, A. Biswas, and B. S. Das. 2021. “Legacy Data-Based National-Scale Digital Mapping of Key Soil Properties in India.” Geoderma 381:114684. https://doi.org/10.1016/j.geoderma.2020.114684.
  • Robertson, G. P., J. R. Crum, and B. G. Ellis. 1993. “The Spatial Variability of Soil Resources Following Long-Term Disturbance.” Oecologia 96 (4): 451–456. https://doi.org/10.1007/BF00320501.
  • Roudier, P., O. R. Burge, S. J. Richardson, J. K. McCarthy, G. J. Grealish, and A. G. Ausseil. 2020. “National scale 3D mapping of soil pH using a data augmentation approach.” Remote Sensing 12 (18): 2872. https://doi.org/10.3390/rs12182872.
  • Samuel-Rosa, A., G. B. M. Heuvelink, G. M. Vasques, and L. H. C. Anjos. 2015. “Do more detailed environmental covariates deliver more accurate soil maps?” Geoderma 243-244:214–227. https://doi.org/10.1016/j.geoderma.2014.12.017.
  • Seibert, J., J. Stendahl, and R. Sørensen. 2007. “Topographical Influences on Soil Properties in Boreal Forests.” Geoderma 141 (1–2): 139–148. https://doi.org/10.1016/j.geoderma.2007.05.013.
  • Shi, J. J., L. Yang, A. X. Zhu, C. Z. Qin, P. Liang, C. Y. Zeng, and T. Pei. 2018. “Machine-Learning Variables at Different Scales Vs. Knowledge-Based Variables for Mapping Multiple Soil Properties.” Soil Science Society of America Journal 82 (3): 645–656. https://doi.org/10.2136/sssaj2017.11.0392.
  • Shrestha, D. L., and D. P. Solomatine. 2006. “Machine Learning Approaches for Estimation of Prediction Interval for the Model Output.” Neural Networks 19 (2): 225–235. https://doi.org/10.1016/j.neunet.2006.01.012.
  • Stone, D., K. Ritz, B. G. Griffiths, A. Orgiazzi, and R. E. Creamer. 2016. “Selection of biological indicators appropriate for European soil monitoring.” Applied Soil Ecology 97:12–22. https://doi.org/10.1016/j.apsoil.2015.08.005.
  • Sylvain, J. D., F. Anctil, and É. Thiffault. 2021. “Using Bias Correction and Ensemble Modelling for Predictive Mapping and Related Uncertainty: A Case Study in Digital Soil Mapping.” Geoderma 403:115153. https://doi.org/10.1016/j.geoderma.2021.115153.
  • Taghizadeh-Mehrjardi, R., K. Nabiollahi, and R. Kerry. 2016. “Digital Mapping of Soil Organic Carbon at Multiple Depths Using Different Data Mining Techniques in Baneh Region, Iran.” Geoderma 266:98–110. https://doi.org/10.1016/j.geoderma.2015.12.003.
  • Tajik, S., S. Ayoubi, and M. Zeraatpisheh. 2020. “Digital Mapping of Soil Organic Carbon Using Ensemble Learning Model in Mollisols of Hyrcanian Forests, Northern Iran.” Geoderma Regional 20:e00256. https://doi.org/10.1016/j.geodrs.2020.e00256.
  • Tesfaye, M. A., F. Bravo, R. Ruiz-Peinado, V. Pando, and A. Bravo-Oviedo. 2016. “Impact of Changes in Land Use, Species and Elevation on Soil Organic Carbon and Total Nitrogen in Ethiopian Central Highlands.” Geoderma 261:70–79. https://doi.org/10.1016/j.geoderma.2015.06.022.
  • Tibhirine, Z., K. Ibno Namr, A. Bouasria, B. El Bourhrami, and H. Ettayeb. 2023. “Geospatial and Temporal Assessment of the Variability of Soil Organic Matter and Electrical Conductivity in Irrigated Semi-Arid Area.” Geology, Ecology & Landscapes 1–12. https://doi.org/10.1080/24749508.2023.2179748.
  • Van Geel, M., K. Yu, G. Peeters, K. van Acker, M. Ramos, C. Serafim, and O. Honnay. 2019. “Soil Organic Matter Rather Than Ectomycorrhizal Diversity is Related to Urban Tree Health.” PLoS One 14 (11): e0225714. https://doi.org/10.1371/journal.pone.0225714.
  • Wiesmeier, M., F. Barthold, B. Blank, and I. Kögel-Knabner. 2011. “Digital Mapping of Soil Organic Matter Stocks Using Random Forest Modeling in a Semi-Arid Steppe Ecosystem.” Plant and Soil 340 (1–2): 7–24. https://doi.org/10.1007/s11104-010-0425-z.
  • Wulanningtyas, H. S., Y. Gong, P. Li, N. Sakagami, J. Nishiwaki, and M. Komatsuzaki. 2021. “A Cover Crop and No-Tillage System for Enhancing Soil Health by Increasing Soil Organic Matter in Soybean Cultivation.” Soil and Tillage Research 205:104749. https://doi.org/10.1016/j.still.2020.104749.
  • Yang, X., X. Chen, and X. Yang. 2019. “Effect of Organic Matter on Phosphorus Adsorption and Desorption in a Black Soil from Northeast China.” Soil and Tillage Research 187:85–91. https://doi.org/10.1016/j.still.2018.11.016.
  • Yu, F., B. Faybishenko, A. Hunt, and B. Ghanbarian. 2017. “A Simple Model of the Variability of Soil Depths.” Water 9 (7): 460. https://doi.org/10.3390/w9070460.
  • Zapata‐Rios, X., P. D. Brooks, P. A. Troch, J. McIntosh, and Q. Guo. 2016. “Influence of Terrain Aspect on Water Partitioning, Vegetation Structure and Vegetation Greening in High‐Elevation Catchments in Northern New Mexico.” Ecohydrology 9 (5): 782–795. https://doi.org/10.1002/eco.1674.
  • Zeraatpisheh, M., S. Ayoubi, A. Jafari, and P. Finke. 2017. “Comparing the Efficiency of Digital and Conventional Soil Mapping to Predict Soil Types in a Semi-Arid Region in Iran.” Geomorphology 285:186–204. https://doi.org/10.1016/j.geomorph.2017.02.015.
  • Zeraatpisheh, M., S. Ayoubi, A. Jafari, S. Tajik, and P. Finke. 2019. “Digital Mapping of Soil Properties Using Multiple Machine Learning in a Semi-Arid Region, Central Iran.” Geoderma 338:445–452. https://doi.org/10.1016/j.geoderma.2018.09.006.
  • Zeraatpisheh, M., Y. Garosi, H. R. Owliaie, S. Ayoubi, R. Taghizadeh-Mehrjardi, T. Scholten, and M. Xu. 2022. “Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates.” Catena 208:105723. https://doi.org/10.1016/j.catena.2021.105723.
  • Zhang, Y. Y., W. Wu, and H. Liu. 2019. “Factors Affecting Variations of Soil pH in Different Horizons in Hilly Regions.” PloS One 14 (6): e0218563.
  • Zhang, M., M. Zhang, H. Yang, Y. Jin, X. Zhang, and H. Liu. 2021. “Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine.” Remote Sensing 13 (15): 2934. https://doi.org/10.3390/rs13152934.
  • Zhao, W., T. Cao, Z. Li, and J. Sheng. 2019. “Comparison of IDW, Cokriging and ARMA for Predicting Spatiotemporal Variability of Soil Salinity in a Gravel–Sand Mulched Jujube Orchard.” Environmental Monitoring and Assessment 191 (6): 1–15. https://doi.org/10.1007/s10661-019-7499-8.
  • Žížala, D., R. Minařík, J. Skála, H. Beitlerová, A. Juřicová, J. R. Rojas, V. Penížek, and T. Zádorová. 2022. “High-Resolution Agriculture Soil Property Maps from Digital Soil Mapping Methods, Czech Republic.” Catena 212:106024. https://doi.org/10.1016/j.catena.2022.106024.
  • Zornoza, R., J. A. Acosta, F. Bastida, S. G. Domínguez, D. M. Toledo, and A. Faz. 2015. “Identification of Sensitive Indicators to Assess the Interrelationship Between Soil Quality, Management Practices and Human Health.” Soil 1 (1): 173–185. https://doi.org/10.5194/soil-1-173-2015.