91
Views
0
CrossRef citations to date
0
Altmetric
Research article

Spatial enhancement of Landsat-9 land surface temperature imagery by Fourier transformation-based panchromatic fusion

, , &
Pages 88-109 | Received 27 Jun 2023, Accepted 04 Dec 2023, Published online: 19 Dec 2023

References

  • Ding, H. and Shi, W., 2017. A novel hybrid pan-sharpen method using IHS transform and optimization. Advances in Remote Sensing, 6 (03), 229–243. doi:10.4236/ars.2017.63017
  • Ehlers, M., Klonus, S., and Åstrand, P.J., 2008. Quality assessment for multi-sensor multi-date image fusion. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B4), 499–506.
  • Ezimand, K., et al., January 2021. Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques. Sustainable Cities and Society, 64, 10.1016/j.scs.2020.102508.
  • Farfán, J.F. and Cea, L., 2022. Improving the predictive skills of hydrological models using a combinatorial optimization algorithm and artificial neural networks. Modeling Earth Systems and Environment, 9 (1), 1103–1118. doi:10.1007/s40808-022-01540-1
  • Gharbia, R., et al., 2014. Remote sensing image fusion approach based on brovey and wavelets transforms. Advances in Intelligent Systems & Computing, 303, 311–321. doi:10.1007/978-3-319-08156-4_31
  • Hazaymeh, K., Hassan, Q.K., and Govind, A., 3 2015. Fusion of MODIS and Landsat-8 surface temperature images: a New approach. PLoS One, 10 (3), e0117755. doi:10.1371/journal.pone.0117755
  • Jagalingam, P. and Vittal Hegde, A., 2015. A review of quality metrics for fused image. Aquatic Procedia, 4 (Icwrcoe), 133–142. doi:10.1016/j.aqpro.2015.02.019
  • Jelének, J., et al., 10 2016. Testing a modified PCA-Based sharpening approach for image fusion. Remote Sensing, 8 (10), 794. doi:10.3390/rs8100794
  • Jung, H.S. and Whan Park, S., 2014. Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and Panchromatic (PAN) images. Sensors (Switzerland), 14 (12), 24425–24440. doi:10.3390/s141224425
  • Kumar, V., et al., 2023a. A comparison of machine learning models for predicting rainfall in urban metropolitan Cities. Sustainability, 15 (18), 13724. doi:10.3390/su151813724
  • Kumar, V., et al., 2023b. The state of the art in Deep Learning applications, challenges, and future prospects: a comprehensive review of flood forecasting and management. Sustainability (Switzerland). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/su151310543.
  • Lillo-Saavedra, M., et al., 2005. Fusion of multispectral and Panchromatic satellite sensor imagery based on tailored filtering in the Fourier domain. International Journal of Remote Sensing, 26 (6), 1263–1268. doi:10.1080/01431160412331330239
  • Li, T. and Meng, Q., 2018. A Mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179 (November), 63–71. doi:10.1016/j.landurbplan.2018.07.010
  • Lulla, K., et al, 2021. Mission to Earth: LANDSAT 9 will continue to view the world. Geocarto International, 36 (20), 2261–2263. doi:10.1080/10106049.2021.1991634
  • Mandanici, E., et al., 2019. A Multi-image super-resolution algorithm applied to thermal imagery. Applied Geomatics, 11 (3), 215–228. doi:10.1007/s12518-019-00253-y
  • Moosavi, V., et al., 2015. A wavelet-Artificial Intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature. Remote Sensing of Environment, 169 (November), 243–254. doi:10.1016/j.rse.2015.08.015
  • Ngalande, C. and Achola Odera, P., 2023. Modelling spatial–Temporal expansion of Lilongwe city using Shannon’s Entropy model through Semi-Dynamic Environmental mapping and analysis. Modeling Earth Systems and Environment, 9 (4), 4103–4115. doi:10.1007/s40808-023-01728-z
  • Niroumand-Jadidi, M., Legleiter, C.J., and Bovolo, F., 2022. River bathymetry retrieval from Landsat-9 images based on neural networks and comparison to SuperDove and Sentinel-2. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 15, 5250–5260. doi:10.1109/JSTARS.2022.3187179
  • Omran, M.G.H., Salman, A., and Engelbrecht, A.P., 2006. Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Analysis and Applications, 8 (4), 332–344. doi:10.1007/s10044-005-0015-5
  • Pardo-Igúzquiza, E. and Atkinson, P.M., 2007. Modelling the semivariograms and cross-semivariograms required in downscaling cokriging by numerical convolution-deconvolution. Computers & Geosciences, 33 (10), 1273–1284. doi:10.1016/j.cageo.2007.05.004
  • Park, H., et al., 2017. Sharpening the VNIR and SWIR bands of Sentinel-2A imagery through modified selected and synthesized band schemes. Remote Sensing, 9 (10), 1080. doi:10.3390/rs9101080
  • Pérez-Benito, C., et al., 2017. Smoothing vs. Sharpening of colour images: together or separated. Applied Mathematics and Nonlinear Sciences, 2 (1), 299–316. doi:10.21042/amns.2017.1.00025
  • Pohl, C. and Van Genderen, J.L., 1998. Review article multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19 (5), 823–854. doi:10.1080/014311698215748
  • Roy, D.P., et al., 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185 (November), 57–70. doi:10.1016/j.rse.2015.12.024
  • Sharma, K.V., et al., 2023. LANDSAT 8 LST pan sharpening using novel Principal component based downscaling model. Remote Sensing Applications: Society & Environment, 30, 30. doi:10.1016/j.rsase.2023.100963
  • Sharma, K.V., Khandelwal, S., and Kaul, N., 1 2021. Principal component based fusion of land surface temperature (LST) and Panchromatic (PAN) images. Spatial Information Research, 29 (1), 31–42. doi:10.1007/s41324-020-00333-x
  • Singh, K., et al., 2023. Development and application of Modeling techniques to estimate the unsaturated hydraulic conductivity. Modeling Earth Systems and Environment, 9 (4), 4557–4571. doi:10.1007/s40808-023-01744-z
  • Sismanidis, P., et al., 2017. Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels. Remote Sensing, 9 (1), 23. doi:10.3390/rs9010023
  • Sledz, A., Unger, J., and Heipke, C., 2018. Thermal IR imaging: image quality and orthophoto generation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42 (1), 413–420. doi:10.5194/isprs-archives-XLII-1-413-2018
  • Somvanshi, S.S., et al., 2018. Comparative statistical analysis of the quality of image enhancement techniques. International Journal of Image and Data Fusion, 9 (2), 131–151. doi:10.1080/19479832.2017.1355336
  • Son, N.T., et al., 2017. Assessment of urbanization and urban heat islands in Ho Chi Minh City, Vietnam using Landsat data. Sustainable Cities and Society, 30, 150–161. doi:10.1016/j.scs.2017.01.009
  • Tadić, J.M., et al., 2017. Spatio-Temporal approach to moving window block Kriging of satellite data v1.0. Geoscientific Model Development, 10 (2), 709–720. doi:10.5194/gmd-10-709-2017
  • Webster, J.G., Fang, Y., and Lin, W., 2015. Methods for image quality assessment. Wiley Encyclopedia of Electrical and Electronics Engineering, XXXVII, 1–11. doi:10.1002/047134608x.w8282
  • Wu, G. and Liu, Y., 2015. Downscaling surface water inundation from coarse data to fine-scale resolution: methodology and accuracy assessment. Remote Sensing, 7 (12), 15989–3. doi:10.3390/rs71215813
  • Yang, C., et al., 2018. An IHS-Based pan-sharpening method for spectral fidelity improvement using ripplet transform and compressed Sensing. Sensors (Switzerland), 18 (11), 3624. doi:10.3390/s18113624
  • Zhou, D., et al., 2019. Satellite Remote Sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sensing, 11 (1), 1–36. doi:10.3390/rs11010048
  • Zhu, X., et al., 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172 (January), 165–177. doi:10.1016/j.rse.2015.11.016
  • Zhu, X.X. and Bamler, R., 2013. A Sparse image fusion algorithm with application to pan-sharpening. IEEE Transactions on Geoscience & Remote Sensing, 51 (5), 2827–2836. doi:10.1109/TGRS.2012.2213604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.