1,560
Views
2
CrossRef citations to date
0
Altmetric
Review

Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression

Article: 2178201 | Received 31 Oct 2022, Accepted 03 Feb 2023, Published online: 16 Feb 2023

References

  • Hetzer MW. The nuclear envelope. Cold Spring harbor perspectives in biology. Cold Spring Harbor Perspectives in Biology. 2010;2(3):a000539.
  • Lin DH, Hoelz A. The structure of the nuclear pore complex (an update). Annu Rev Biochem. 2019;88:725.
  • van Steensel B, Belmont AS. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 2017;169(5):780–16. Epub 2017/05/20. PubMed PMID: 28525751; PubMed Central PMCID: PMCPMC5532494
  • Bi X, Cheng YJ, Hu B, et al. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res. 2017;27(7):1162–1173. Epub 2017/04/08. PubMed PMID: 28385710; PubMed Central PMCID: PMCPMC5495068
  • Mattout A, Cabianca DS, Gasser SM. Chromatin states and nuclear organization in development—a view from the nuclear lamina. Genome Biol. 2015;16(1):1–15.
  • Mattout-Drubezki A, Gruenbaum Y. Dynamic interactions of nuclear lamina proteins with chromatin and transcriptional machinery. Cell Mol Life Sci. 2003;60(10):2053–2063.
  • Sakamoto Y. Nuclear lamina CRWN proteins regulate chromatin organization, gene expression, and nuclear body formation in plants. J Plant Res. 2020;133(4):457–462. Epub 2020/04/02. PubMed PMID: 32232600
  • Chen C-Y, Chi Y-H, Mutalif RA, et al. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell. 2012;149(3):565–577.
  • Tang Y, Dong Q, Wang T, et al. PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Dev Cell. 2022;57(1):19–31. e6.
  • Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol. 2021;13(9):a040477. Epub 2021/03/24. PubMed PMID: 33753404; PubMed Central PMCID: PMCPMC8411953
  • Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet. 2019;20(1):39–50.
  • de Vosse Dw V, Wan Y, Wozniak RW, et al. Role of the nuclear envelope in genome organization and gene expression. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2011;3(2):147–166.
  • Pascual-Garcia P, Capelson M. The nuclear pore complex and the genome: organizing and regulatory principles. Curr Opin Genet Dev. 2021;67:142–150.
  • Zimmerli CE, Allegretti M, Rantos V, et al. Nuclear pores dilate and constrict in cellulo. Science. 2021;374(6573):eabd9776.
  • Schuller AP, Wojtynek M, Mankus D, et al. The cellular environment shapes the nuclear pore complex architecture. Nature. 2021;598(7882):667–671.
  • Akey CW, Singh D, Ouch C, et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell. 2022;185(2):361–78. e25.
  • Knockenhauer KE, Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell. 2016;164(6):1162–1171.
  • Bensidoun P, Reiter T, Montpetit B, et al. Nuclear mRNA metabolism drives selective basket assembly on a subset of nuclear pore complexes in budding yeast. Mol Cell. 2022;82(20):3856–71. e6.
  • Kittisopikul M, Shimi T, Tatli M, et al. Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins. J Cell Biol. Epub 2021/02/12. PubMed PMID: 33570570; PubMed Central PMCID: PMCPMC7883741. 2021;220(4).
  • Fišerová J, Maninová M, Sieger T, et al. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution. Cell Mol Life Sci. 2019;76(11):2199–2216.
  • Xie W, Chojnowski A, Boudier T, et al. A-type lamins form distinct filamentous networks with differential nuclear pore complex associations. Curr Biol. 2016;26(19):2651–2658.
  • Tang Y, Ho MI, Kang B-H, et al. GBPL3 localizes to the nuclear pore complex and functionally connects the nuclear basket with the nucleoskeleton in plants. PLoS Biol. 2022;20(10):e3001831.
  • Gomez-Cavazos JS, Hetzer MW. Outfits for different occasions: tissue-specific roles of Nuclear Envelope proteins. Curr Opin Cell Biol. 2012;24(6):775–783.
  • Groves NR, Biel AM, Newman-Griffis AH, et al. Dynamic Changes in Plant Nuclear Organization in Response to Environmental and Developmental Signals. Plant Physiol. 2018;176(1):230–241. Epub 2017/07/26. PubMed PMID: 28739821; PubMed Central PMCID: PMCPMC5761808
  • Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus. 2020;11(1):347–363. Epub 2020/12/10. PubMed PMID: 33295233; PubMed Central PMCID: PMCPMC7746251
  • Goldberg MW, Fiserova J, Huttenlauch I, et al. A new model for nuclear lamina organization. Biochem Soc Trans. 2008;36(6):1339–1343.
  • Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol. 2016;8(9):2663–2671.
  • Ciska M, Hikida R, Masuda K, et al. Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. J Exp Bot. 2019;70(10):2651–2664. Epub 2019/03/05. PubMed PMID: 30828723; PubMed Central PMCID: PMCPMC6506774
  • Ciska M, Moreno Díaz de la Espina S. The intriguing plant nuclear lamina. Front Plant Sci. 2014;5:166.
  • Wang H, Dittmer TA, Richards EJ. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol. 2013;13(1):1–13.
  • Ciska M, Moreno Díaz de la Espina S. NMCP/LINC proteins: putative lamin analogs in plants? Plant Signal Behav. 2013;8(12):e26669.
  • Masuda K, Hikida R, Fujino K. The plant nuclear lamina proteins NMCP1 and NMCP2 form a filamentous network with lateral filament associations. J Exp Bot. 2021;72(18):6190–6204.
  • Sakamoto Y, Sato M, Sato Y, et al. Subnuclear gene positioning through lamina association affects copper tolerance. Nat Commun. 2020;11(1):5914. Epub 2020/11/22. PubMed PMID: 33219233; PubMed Central PMCID: PMCPMC7679404
  • Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, et al. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell. 2007;19(9):2793–2803. Epub 2007/09/18. PubMed PMID: 17873096; PubMed Central PMCID: PMCPMC2048703
  • Sakamoto Y, Takagi S. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol. 2013;54(4):622–633. Epub 2013/02/12. PubMed PMID: 23396599
  • Graumann K. Evidence for LINC1-SUN associations at the plant nuclear periphery. PLoS One. 2014;9(3):e93406. Epub 2014/03/29. PubMed PMID: 24667841; PubMed Central PMCID: PMCPMC3965549
  • Hu B, Wang N, Bi X, et al. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol. 2019;20(1):87. Epub 2019/05/02. PubMed PMID: 31039799; PubMed Central PMCID: PMCPMC6492433
  • Feng C-M, Qiu Y, Van Buskirk EK, et al. Light-regulated gene repositioning in Arabidopsis. Nat Commun. 2014;5(1):1–9.
  • Jarad M, Mariappan K, Almeida-Trapp M, et al. The lamin-like LITTLE NUCLEI 1 (LINC1) regulates pattern-triggered immunity and jasmonic acid signaling. Front Plant Sci. 2020; 10:1639.
  • Choi J, Strickler SR, Richards EJ. Loss of CRWN Nuclear Proteins Induces Cell Death and Salicylic Acid Defense Signaling. Plant Physiol. 2019;179(4):1315–1329. Epub 2019/01/31. PubMed PMID: 30696746; PubMed Central PMCID: PMCPMC6446779
  • Mikulski P, Hohenstatt ML, Farrona S, et al. The Chromatin-Associated Protein PWO1 Interacts with Plant Nuclear Lamin-like Components to Regulate Nuclear Size. Plant Cell. 2019;31(5):1141–1154. Epub 2019/03/28. PubMed PMID: 30914470; PubMed Central PMCID: PMCPMC6533023
  • Choi J, Richards EJ. The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes. Plant Signal Behav. 2020;15(1):1694224. Epub 2019/11/23. PubMed PMID: 31752584; PubMed Central PMCID: PMCPMC7012172
  • Guo T, Mao X, Zhang H, et al. Lamin-like Proteins Negatively Regulate Plant Immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. Mol Plant. 2017;10(10):1334–1348. Epub 2017/09/26. PubMed PMID: 28943325
  • Wang N, Karaaslan ES, Faiss N, et al. Characterization of a plant nuclear matrix constituent protein in liverwort. Front Plant Sci. 2021; 7:12.
  • van Zanten M, Koini MA, Geyer R, et al. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci U.S.A. 2011;108(50):20219–20224.
  • Zhao W, Guan C, Feng J, et al. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein. J Integr Plant Biol. 2016;58(7):669–678.
  • Ding N, Maiuri AR, O’Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. Mutat Res/Rev Mutat Res. 2019;780:69–81.
  • Wang Q, Liu S, Lu C, et al. Roles of CRWN-family proteins in protecting genomic DNA against oxidative damage. J Plant Physiol. 2019;233:20–30. Epub 2018/12/24. PubMed PMID: 30576929.
  • Hirakawa T, Matsunaga S. Characterization of DNA repair foci in root cells of Arabidopsis in response to DNA damage. Front Plant Sci. 2019;30 :990.
  • Hohenstatt ML, Mikulski P, Komarynets O, et al. PWWP-DOMAIN INTERACTOR OF POLYCOMBS1 Interacts with Polycomb-Group Proteins and Histones and Regulates Arabidopsis Flowering and Development. Plant Cell. 2018;30(1):117–133. Epub 2018/01/14. PubMed PMID: 29330200; PubMed Central PMCID: PMCPMC5810566
  • Yang J, Chang Y, Qin Y, et al. A lamin‐like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. New Phytol. 2020;227(1):65–83.
  • Goto C, Tamura K, Fukao Y, et al. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis. Plant Cell. 2014;26(5):2143–2155. Epub 2014/05/16. PubMed PMID: 24824484; PubMed Central PMCID: PMCPMC4079374
  • McKenna JF, Gumber HK, Turpin ZM, et al. Maize (Zea mays L.) nucleoskeletal proteins regulate nuclear envelope remodeling and function in stomatal complex development and pollen viability. Front Plant Sci. 2021;12:645218.
  • Mermet S, Voisin M, Mordier J, et al. Evolutionary conserved protein motifs drive attachment of the plant nucleoskeleton at nuclear pores. bioRxiv. 2021.
  • Smoyer CJ, Katta SS, Gardner JM, et al. Analysis of membrane proteins localizing to the inner nuclear envelope in living cells. J Cell Biol. 2016;215(4):575–590.
  • Tang Y, Huang A, Gu Y. Global profiling of plant nuclear membrane proteome in Arabidopsis. Nat Plants. 2020;6(7):838–847. Epub 2020/07/01. PubMed PMID: 32601417
  • Segura-Totten M, Wilson KL. BAF: roles in chromatin, nuclear structure and retrovirus integration. Trends Cell Biol. 2004;14(5):261–266.
  • Caputo S, Couprie J, Duband-Goulet I, et al. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J Biol Chem. 2006;281(26):18208–18215.
  • Choi J, Richards EJ. The edge of the nucleus: variations on a theme. Dev Cell. 2022;57(1):3–4.
  • Rothballer A, Kutay U. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma. 2013;122(5):415–429.
  • Kim DI, Birendra K, Roux KJ. Making the LINC: SUN and KASH protein interactions. Biol Chem. 2015;396(4):295–310.
  • Bouzid T, Kim E, Riehl BD, et al. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol Eng. 2019;13(1):1–12.
  • Graumann K, Vanrobays E, Tutois S, et al. Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J Exp Bot. 2014;65(22):6499–6512.
  • Graumann K, Runions J, Evans DE. Characterization of SUN‐domain proteins at the higher plant nuclear envelope. Plant J. 2010;61(1):134–144.
  • Poulet A, Probst AV, Graumann K, et al. Exploring the evolution of the proteins of the plant nuclear envelope. Nucleus. 2017;8(1):46–59.
  • Xue Y, Meng JG, Jia PF, et al. POD1-SUN-CRT3 chaperone complex guards the ER sorting of LRR receptor kinases in Arabidopsis. Nat Commun. 2022;13(1):2703. Epub 2022/05/17. PubMed PMID: 35577772; PubMed Central PMCID: PMCPMC9110389
  • Zhou X, Graumann K, Evans DE, et al. Novel plant SUN–KASH bridges are involved in RanGAP anchoring and nuclear shape determination. J Cell Biol. 2012;196(2):203–211.
  • Zhou X, Groves NR, Meier I. Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus. 2015;6(2):144–153.
  • Zhou X, Meier I. Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. Proc Natl Acad Sci U.S.A. 2014;111(32):11900–11905.
  • Meier I, Griffis AH, Groves NR, et al. Regulation of nuclear shape and size in plants. Curr Opin Cell Biol. 2016;40:114–123.
  • Gumber HK, McKenna JF, Estrada AL, et al. Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species Zea mays. J Cell Sci. 2019;132(3):jcs221390.
  • Varas J, Graumann K, Osman K, et al. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J. 2015;81(2):329–346. Epub 2014/11/22. PubMed PMID: 25412930
  • Schober H, Ferreira H, Kalck V, et al. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 2009;23(8):928–938.
  • Shibuya H, K-i I, Watanabe Y. The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat Cell Biol. 2014;16(2):145–156.
  • Murphy SP, Bass HW. The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. J Cell Sci. 2012;125(15):3681–3690.
  • Murphy SP, Gumber HK, Mao Y, et al. A dynamic meiotic SUN Belt includes the zygotene-stage telomere bouquet and is disrupted in chromosome segregation mutants of maize (Zea mays L.). Front Plant Sci. 2014;5:314.
  • Zhang F, Ma L, Zhang C, et al. The SUN domain proteins OsSUN1 and OsSUN2 play critical but partially redundant roles in meiosis. Plant Physiol. 2020;183(4):1517–1530.
  • Xiong H, Rivero F, Euteneuer U, et al. Dictyostelium Sun‐1 connects the centrosome to chromatin and ensures genome stability. Traffic. 2008;9(5):708–724.
  • Poulet A, Duc C, Voisin M, et al. The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Sci. 2017;130(3):590–601.
  • Sakamoto T, Sakamoto Y, Grob S, et al. Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins. Nat Plants. 2022;8:940–953.
  • Wang W, Zhang X, Niittyla T. OPENER Is a Nuclear Envelope and Mitochondria Localized Protein Required for Cell Cycle Progression in Arabidopsis. Plant Cell. 2019;31(7):1446–1465. Epub 2019/04/27. PubMed PMID: 31023726; PubMed Central PMCID: PMCPMC6635878
  • Pawar V, Poulet A, Detourne G, et al. A novel family of plant nuclear envelope-associated proteins. J Exp Bot. 2016;67(19):5699–5710. Epub 2016/09/16. PubMed PMID: 27630107
  • Batzenschlager M, Masoud K, Janski N, et al. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana. Front Plant Sci. 2013;4:480. Epub 2013/12/19. PubMed PMID: 24348487; PubMed Central PMCID: PMCPMC3842039.
  • Batzenschlager M, Lermontova I, Schubert V, et al. Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A. 2015;112(28):8656–8660. Epub 2015/07/01. PubMed PMID: 26124146; PubMed Central PMCID: PMCPMC4507256
  • Goswami R, Asnacios A, Milani P, et al. Mechanical Shielding in Plant Nuclei. Curr Biol. 2020;30(11):2013–25 e3. Epub 2020/04/25. PubMed PMID: 32330420
  • Singh G, Batzenschlager M, Tomkova D, et al. GIP1 and GIP2 contribute to the maintenance of genome stability at the nuclear periphery. Front Plant Sci. 2022;12:804928.
  • Li X, Gu Y. Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling. Curr Opin Plant Biol. 2020;58:60–68. Epub 2020/11/21. PubMed PMID: 33217650.
  • Gu Y. The nuclear pore complex: a strategic platform for regulating cell signaling. New Phytol. 2018;219(1):25–30. Epub 2017/09/01. PubMed PMID: 28858378
  • Sumner MC, Brickner J. The Nuclear Pore Complex as a Transcription Regulator. Cold Spring Harb Perspect Biol. 2022;14(1). Epub 2021/06/16. PubMed PMID: 34127448; PubMed Central PMCID: PMCPMC8725628
  • Fišerová J, Efenberková M, Sieger T, et al. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J Cell Sci. 2017;130(12):2066–2077.
  • Blobel G. Gene gating: a hypothesis. Proceedings of the National Academy of Sciences. 1985;82(24):8527–8529.
  • Schmid M, Arib G, Laemmli C, et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell. 2006;21(3):379–391.
  • Taddei A, Van Houwe G, Hediger F, et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature. 2006;441(7094):774–778.
  • Kerr SC, Corbett AH. Should INO stay or should INO Go: a DNA “zip code” mediates gene retention at the nuclear pore. Mol Cell. 2010;40(1):3–5.
  • Smith S, Galinha C, Desset S, et al. Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus. 2015;6(6):471–478.
  • Bensidoun P, Zenklusen D, Oeffinger M. Choosing the right exit: how functional plasticity of the nuclear pore drives selective and efficient mRNA export. Wiley Interdiscip Rev RNA. 2021;12(6):e1660. Epub 2021/05/04. PubMed PMID: 33938148
  • Kiseleva E, Goldberg MW, Daneholt B, et al. RNP export is mediated by structural reorganization of the nuclear pore basket. J Mol Biol.; 1996. p. 304–311.
  • Cibulka J, Bisaccia F, Radisavljević K, et al. Assembly principle of a membrane-anchored nuclear pore basket scaffold. Sci Adv. 2022;8(6):eabl6863.
  • Jacob Y, Mongkolsiriwatana C, Veley KM, et al. The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol. 2007;144(3):1383–1390.
  • Xu X, Rose A, Muthuswamy S, et al. NUCLEAR PORE ANCHOR, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, Is Involved in mRNA Export and SUMO Homeostasis and Affects Diverse Aspects of Plant Development. Plant Cell. 2007;19(5):1537–1548.
  • Chang Y-N, Wang Z, Ren Z, et al. NUCLEAR PORE ANCHOR and EARLY IN SHORT DAYS 4 negatively regulate abscisic acid signaling by inhibiting Snf1-related protein kinase2 activity and stability in Arabidopsis. J Integr Plant Biol. 2022;64(11):2060–2074. Epub 2022/08/20. PubMed PMID: 35984097
  • Lu Q, Tang X, Tian G, et al. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 2009;61(2):259–270.
  • Zhang B, You C, Zhang Y, et al. Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat Plants. 2020;6(8):957–969.
  • Tamura K, Fukao Y, Hatsugai N, et al. Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana. Nucleus. 2017;8(3):301–311. Epub 2017/01/11. PubMed PMID: 28071978; PubMed Central PMCID: PMCPMC5499915
  • Tamura K, Fukao Y, Iwamoto M, et al. Identification and Characterization of Nuclear Pore Complex Components in Arabidopsis thaliana. Plant Cell. 2011;22(12):4084–4097. Epub 2010/12/30. PubMed PMID: 21189294; PubMed Central PMCID: PMCPMC3027183
  • Huang S, Zhu S, Kumar P, et al. A phase-separated nuclear GBPL circuit controls immunity in plants. Nature. 2021;594(7863):424–429. Epub 2021/05/28. PubMed PMID: 34040255; PubMed Central PMCID: PMCPMC8478157
  • Mosalaganti S, Kosinski J, Albert S, et al. In situ architecture of the algal nuclear pore complex. Nat Commun. 2018;9(1):1–8.
  • Kim SJ, Fernandez-Martinez J, Nudelman I, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature. 2018;555(7697):475–482.
  • Huang G, Zhang Y, Zhu X, et al. Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis. Cell Res. 2020;30(6):520–531.
  • Parry G. Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. J Exp Bot. 2014;65(20):6057–6067. Epub 2014/08/29. PubMed PMID: 25165147; PubMed Central PMCID: PMCPMC4203139
  • De Leone MJ, Hernando CE, Romanowski A, et al. Bacterial infection disrupts clock gene expression to attenuate immune responses. Curr Biol. 2020;30(9):1740–7. e6.
  • Jung J-H, Park J-H, Lee S, et al. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. Plant Cell. 2013;25(11):4378–4390.
  • Chi YH, Melencion SMB, Alinapon CV, et al. The membrane-tethered NAC transcription factor, AtNTL7, contributes to ER-stress resistance in Arabidopsis. Biochem Biophys Res Commun. 2017;488(4):641–647. Epub 2017/01/16. PubMed PMID: 28088515
  • Cheng Z, Zhang X, Huang P, et al. Nup96 and HOS1 Are Mutually Stabilized and Gate CONSTANS Protein Level, Conferring Long-Day Photoperiodic Flowering Regulation in Arabidopsis. Plant Cell. 2020;32(2):374–391. Epub 2019/12/13. PubMed PMID: 31826964; PubMed Central PMCID: PMCPMC7008479
  • Dong C-H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci. U.S.A. 2006;103(21):8281–8286.
  • Lazaro A, Valverde F, Piñeiro M, et al. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell. 2012;24(3):982–999.
  • Li C, Liu L, Teo ZWN, et al. Nucleoporin 160 Regulates Flowering through Anchoring HOS1 for Destabilizing CO in Arabidopsis. Plant Commun. 2020;1(2):100033. Epub 2020/12/29. PubMed PMID: 33367234; PubMed Central PMCID: PMCPMC7748013
  • Han SH, Park YJ, Park CM. HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat Plants. 2020;6(12):1439–1446. Epub 2020/11/18. PubMed PMID: 33199892
  • Mosalaganti S, Obarska-Kosinska A, Siggel M, et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science. 2022;376(6598):eabm9506.
  • Gu Y, Zebell SG, Liang Z, et al. Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell. 2016;166(6):1526–38. e11.
  • Wang S, Gu Y, Zebell SG, et al. A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host Microbe. 2014;16(6):787–794.
  • Xu F, Jia M, Li X, et al. Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell. 2021;33(3):697–713.
  • Peng S, Guo D, Guo Y, et al. CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 is an RNA-binding protein controlling plant immunity via an RNA processing complex. Plant Cell. 2022;34(5):1724–1744. Epub 2022/02/10. PubMed PMID: 35137215; PubMed Central PMCID: PMCPMC9048907