1,456
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Differential contributions of nuclear lamina association and genome compartmentalization to gene regulation

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2197693 | Received 12 Sep 2022, Accepted 17 Mar 2023, Published online: 05 Apr 2023

References

  • McCord RP, Kaplan N, Giorgetti L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol Cell. 2020;77(4):688–19.
  • Bersaglieri C, Kresoja-Rakic J, Gupta S, et al. Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat Commun. 2022;13(1): bioRxiv 2020:2020.11.17.386797. DOI:10.1038/s41467-022-29146-2
  • Gupta S, Santoro R. Regulation and roles of the nucleolus in embryonic stem cells: from ribosome biogenesis to genome organization. Stem Cell Rep. 2020;15(6):1206–1219.
  • Morimoto M, Boerkoel CF. The role of nuclear bodies in gene expression and disease. Biology (Basel). 2013;2(3):976–1033.
  • Lochs SJ, Kefalopoulou S, Kind J. Lamina associated domains and gene regulation in development and cancer. Cells. 2019;8(3):271.
  • Van Steensel B, Belmont AS. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 2017;169(5):780–791.
  • Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes & Development. 2008;22(7):832–853. DOI:10.1101/gad.1652708
  • Vahabikashi A, Adam SA, Medalia O, et al. Nuclear lamins: structure and function in mechanobiology. APL Bioeng. 2022;6(1):011503.
  • Zullo JM, Demarco IA, Piqué-Regi R, et al. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 2012;149(7):1474–1487. DOI:10.1016/j.cell.2012.04.035
  • Harr JC, Luperchio TR, Wong X, et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 2015;208(1):33–52.
  • Finlan LE, Sproul D, Thomson I, et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 2008;4(3):e1000039. DOI:10.1371/journal.pgen.1000039
  • Robson MI, Jose I, Czapiewski R, et al. Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Molecular Cell. 2016;62(6):834–847. DOI:10.1016/j.molcel.2016.04.035
  • Rønningen T, Shah A, Oldenburg AR, et al. Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Res. 2015;25(12):1825–1835. DOI:10.1101/gr.193748.115
  • Brueckner L, Zhao PA, van Schaik T, et al. Local rewiring of genome–nuclear lamina interactions by transcription. Embo J. 2020;39(6):e103159. DOI:10.15252/embj.2019103159
  • Rao SS, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–1680. DOI:10.1016/j.cell.2014.11.021
  • Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–293. DOI:10.1126/science.1181369
  • San Martin R, Das P, Reis Marques R D, et al. Chromosome compartmentalization alterations in prostate cancer cell lines model disease progression. J Cell Biol. 2022;221(2):221. DOI:10.1083/jcb.202104108
  • Cuomo AS, Seaton DD, McCarthy DJ, et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat Commun. 2020;11:1–14.
  • Grancharova T, Gerbin KA, Rosenberg AB, et al. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep. 2021;11(1):1–21. DOI:10.1038/s41598-021-94732-1
  • Shah PP, Keough KC, Gjoni K, et al. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol. 2023;24:16. DOI:10.1186/s13059-023-02849-5.
  • Peric-Hupkes D, Meuleman W, Pagie L, et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Molecular Cell. 2010;38(4):603–613. DOI:10.1016/j.molcel.2010.03.016
  • Dixon JR, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518(7539):331–336. DOI:10.1038/nature14222
  • Bonev B, Cohen NM, Szabo Q, et al. Multiscale 3D genome rewiring during mouse neural development. Cell. 2017;171(3):557–72. e24. DOI:10.1016/j.cell.2017.09.043
  • Miura H, Takahashi S, Poonperm R, et al. Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization. Nature Genet. 2019;51(9):1356–1368.
  • Leemans C, van der Zwalm MC, Brueckner L, et al. Promoter-intrinsic and local chromatin features determine gene repression in LADs. Cell. 2019;177(4):852–64. e14. DOI:10.1016/j.cell.2019.03.009
  • Stik G, Vidal E, Barrero M, et al. CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response. Nature Genet. 2020;52(7):655–661. DOI:10.1038/s41588-020-0643-0
  • Honda A, Hoeksema MA, Sakai M, et al. The lung microenvironment instructs gene transcription in neonatal and adult alveolar macrophages. J Immunol. 2022;208(8):ji2101192. DOI:10.4049/jimmunol.2101192
  • Kang YJ, Zhang W. Chapter 13 - stem cells and regenerative medicine. In: Goodman SR, editor. Goodman’s Medical Cell Biology, 4th edition. London, UK: Academic Press; 2021. pp. 361–380. DOI:10.1016/B978-0-12-817927-7.00013-2.
  • Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Gene Dev. 2005;19(10):1129–1155.
  • Caplan AI. Review: mesenchymal stem cells: cell–based reconstructive therapy in orthopedics. Tissue Eng. 2005;11(7–8):1198–1211.
  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37(3):614–636.
  • Nichols W, Murphy D, Cristofalo V, et al. Characterization of a new human diploid cell strain, IMR-90. Science. 1977;196(4285):60–63.
  • Matsuo M, Kaji K, Utakoji T, et al. Ploidy of human embryonic fibroblasts during in vitro aging. J Gerontol. 1982;37(1):33–37.
  • Brattain MG, Fine WD, Khaled FM, et al. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 1981;41(5):1751–1756.
  • Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–153.
  • Yang S, Zhou J, Li D. Functions and diseases of the retinal pigment epithelium. Front Pharmacol. 2021;12. DOI:10.3389/fphar.2021.727870
  • Ponten J, Saksela E. Two established in vitro cell lines from human mesenchymal tumours. Int J Cancer. 1967;2(5):434–447.
  • Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45(3):321–334.
  • Kotecki M, Reddy PS, Cochran BH. Isolation and characterization of a near-haploid human cell line. Exp Cell Res. 1999;252(2):273–280.
  • Schwenk H-U, Schneider U. Cell cycle dependency of a T-cell marker on lymphoblasts. Blut Zeitschrift für die Gesamte Blutforschung. 1975;31(5):299–306.
  • Starnes AC, Huisingh C, Mcgwin G, et al. Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution. Vis Neurosci. 2016;33. DOI:10.1017/S0952523815000310.
  • Pollreisz A, Neschi M, Sloan KR, et al. Atlas of human retinal pigment epithelium organelles significant for clinical imaging. Invest Ophthalmol Visual Sci. 2020;61(8):13. DOI:10.1167/iovs.61.8.13
  • Roy N, Hebrok M. Regulation of cellular identity in cancer. Dev Cell. 2015;35(6):674–684.
  • Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol. 2008;180(1):51–65.
  • Hu H, Ji Q, Song M, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48(11):6001–6018. DOI:10.1093/nar/gkaa425
  • Falk M, Feodorova Y, Naumova N, et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature. 2019;570(7761):395–399. DOI:10.1038/s41586-019-1275-3
  • Smith CL, Lan Y, Jain R, et al. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Sci Adv. 2021;7(39):eabj3035.
  • Poleshko A, Smith CL, Nguyen SC, et al. H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. Elife. 2019;8:e49278.
  • Kourtis N, Moubarak RS, Aranda-Orgilles B, et al. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol. 2015;17(3):322–332. DOI:10.1038/ncb3121
  • Frank CL, Manandhar D, Gordân R, et al. HDAC inhibitors cause site-specific chromatin remodeling at PU. 1-bound enhancers in K562 cells. Epigenetics & Chromatin. 2016;9(1):1–17.
  • Basil P, Robertson MJ, Bingman WE, et al. Cistrome and transcriptome analysis identifies unique androgen receptor (AR) and AR-V7 splice variant chromatin binding and transcriptional activities. Sci Rep. 2022;12(1):1–18. DOI:10.1038/s41598-022-09371-x
  • Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. DOI:10.1126/science.1240104
  • Lammerding J, Fong LG, Ji JY, et al. Lamins a and C but not lamin B1 regulate nuclear mechanics. J Biol Chem. 2006;281(35):25768–25780. DOI:10.1074/jbc.M513511200
  • Fischer T, Hayn A, Mierke CT. Effect of nuclear stiffness on cell mechanics and migration of human breast cancer cells. Front Cell Dev Biol. 2020;8:393.
  • Srivastava LK, Ju Z, Ghagre A, et al. Spatial distribution of lamin A/C determines nuclear stiffness and stress-mediated deformation. J Cell Sci. 2021;134(10):jcs248559.
  • Stephens AD, Banigan EJ, Marko JF. Separate roles for chromatin and lamins in nuclear mechanics. Nucleus. 2018;9(1):119–124.
  • Cho S, Vashisth M, Abbas A, et al. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev Cell. 2019;49(6):920–35. e5. DOI:10.1016/j.devcel.2019.04.020
  • Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet. 2019;20(1):39–50.
  • Solovei I, Wang AS, Thanisch K, et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 2013;152(3):584–598. DOI:10.1016/j.cell.2013.01.009
  • Amendola M, van Steensel B. Nuclear lamins are not required for lamina‐associated domain organization in mouse embryonic stem cells. EMBO Rep. 2015;16(5):610–617.
  • Snyder MJ, Lau AC, Brouhard EA, et al. Anchoring of heterochromatin to the nuclear lamina reinforces dosage compensation-mediated gene repression. PLoS Genet. 2016;12(9):e1006341. DOI:10.1371/journal.pgen.1006341
  • Robson MI, Jose I, Czapiewski R, et al. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Res. 2017;27(7):1126–1138.
  • Forsberg F, Brunet A, Ali TML, et al. Interplay of lamin a and lamin B LADs on the radial positioning of chromatin. Nucleus. 2019;10(1):7–20.
  • Zuleger N, Boyle S, Kelly DA, et al. Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Bio. 2013;14(2):1–20. DOI:10.1186/gb-2013-14-2-r14
  • Brunet A, Forsberg F, Fan Q, et al. Nuclear lamin B1 interactions with chromatin during the circadian cycle are uncoupled from periodic gene expression. Front Genet. 2019;10:917.
  • Constantinescu D, Gray HL, Sammak PJ, et al. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells. 2006;24(1):177–185.
  • Butler JT, Hall LL, Smith KP, et al. Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells. J Cell Biochem. 2009;107(4):609–621.
  • Kohwi M, Lupton Joshua R, Lai S-L, et al. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in drosophila. Cell. 2013;152(1–2):97–108.
  • Chen H, Zheng X, Zheng Y. Age-associated loss of lamin-b leads to systemic inflammation and gut hyperplasia. Cell. 2014;159(4):829–843.
  • Kohwi M, Lupton JR, Lai S-L, et al. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell. 2013;152(1–2):97–108.
  • Clapier CR. Sophisticated conversations between chromatin and chromatin remodelers, and dissonances in cancer. Int J Mol Sci. 2021;22(11):5578.
  • Mitchener MM, Muir TW. Oncohistones: exposing the nuances and vulnerabilities of epigenetic regulation. Molecular Cell. 2022;82(16):2925–2938.
  • Dawson Mark A, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.
  • Blanco E, González-Ramírez M, Alcaine-Colet A, et al. The bivalent genome: characterization, structure, and regulation. Trends Genet. 2020;36(2):118–131.
  • Servant N, Varoquaux N, Lajoie BR, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Bio. 2015;16(1):1–11. DOI:10.1186/s13059-015-0831-x
  • Bushnell B, Rood J, Singer E. Bbmerge–accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12(10):e0185056.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. DOI:10.1093/bioinformatics/bts635
  • Anders S, Pyl PT, Huber W. Htseq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169.
  • Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform. 2020;2(3):lqaa078.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio. 2014;15(12):1–21.
  • Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Bio. 2008;9(9):1–9. DOI:10.1186/gb-2008-9-9-r137
  • Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–1831. DOI:10.1101/gr.136184.111
  • Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nature Biotechnol. 2008;26(12):1351–1359.
  • Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842.
  • Ramírez F, Dündar F, Diehl S, et al. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42(W1):W187–91.