3,230
Views
2
CrossRef citations to date
0
Altmetric
Review

Transcription factor condensates and signaling driven transcription

& ORCID Icon
Article: 2205758 | Received 10 Jan 2023, Accepted 19 Apr 2023, Published online: 02 May 2023

References

  • Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176(3):419.
  • Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30:39–17.
  • Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285–298.
  • Lafontaine DLJ. Birth of nucleolar compartments: phase separation-driven ribosomal RNA sorting and processing. Mol Cell. 2019;76(5):694–696.
  • Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res2021;49(2):636–645. DOI:10.1093/NAR/GKAA1209
  • Liao YC, Fernandopulle MS, Wang G, et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell. 2019;179(1):147–164.e20.
  • Spector DL, Lamond AI. Nuclear Speckles. Cold Spring Harb Perspect Biol. 2011;3(2):a000646.
  • Fox AH, Nakagawa S, Hirose T, et al. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci. 2018;43(2):124–135.
  • Caragliano E, Bonazza S, Frascaroli G, et al. Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Rep. 2022;38(10):110469.
  • Wu C, Holehouse AS, Leung DW, et al. Liquid phase partitioning in virus replication: observations and opportunities.2022;9:285–306. https://doi.org/10.1146/annurev-virology-093020-013659
  • Kilic S, Lezaja A, Gatti M, et al. Phase Separation of 53BP1 Determines Liquid-like Behavior of DNA Repair Compartments. EMBO J. 2019;38(16):e101379.
  • Spegg V, Altmeyer M. Biomolecular Condensates at Sites of DNA Damage: More than Just a Phase. 2021;106:103179. DOI:10.1016/J.DNAREP.2021.103179
  • Sabari BR, Dall’agnese A, Boija A, et al. Coactivator Condensation at Super-Enhancers Links Phase Separation and Gene Control Science. 2018;361(6400):aar3958. DOI:10.1126/SCIENCE.AAR3958
  • Boija A, Klein IA, Sabari BR, et al. Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell. 2018;175(7):1842–1855.e16.
  • Zhou T, Feng Q. Androgen Receptor Signaling and Spatial Chromatin Organization in Castration-Resistant Prostate Cancer. Front Med. 2022;9. DOI:10.3389/FMED.2022.924087
  • Saravanan B, Soota D, Islam Z, et al. Ligand Dependent Gene Regulation by Transient ERα Clustered Enhancers. PLoS Genet. 2020;16(1):e1008516.
  • Chong S, Dugast-Darzacq C, Liu Z, et al. Imaging Dynamic and Selective Low-Complexity Domain Interactions That Control Gene Transcription. Science. 2018;361(6400):80.
  • Cho WK, Spille JH, Hecht M, et al. Mediator and RNA Polymerase II Clusters Associate in Transcription-Dependent Condensates. Science. 2018;361(6400):412–415.
  • Stortz M, Pecci A, Presman DM, et al. Unraveling the Molecular Interactions Involved in Phase Separation of Glucocorticoid Receptor. BMC Biology. 2020;18(1):1–20.
  • Xie J, He H, Kong W, et al. Targeting Androgen Receptor Phase Separation to Overcome Antiandrogen Resistance. Nat Chem Biol. 2022;18(12):1341–1350.
  • Lu Y, Wu T, Gutman O, et al. Phase Separation of TAZ Compartmentalizes the Transcription Machinery to Promote Gene Expression. Nat Cell Biol. 2020;22(4):453–464.
  • Hao S, Fuehrer H, Flores E, et al. YAP Condensates Are Highly Organized Hubs for YAP/TEAD Transcription. bioRxiv. 20222022(24):513621. DOI:10.1101/2022.10.24.513621
  • Banani SF, Rice AM, Peeples WB, et al. Compositional Control of Phase-Separated Cellular Bodies. Cell. 2016;166(3):651.
  • Shrinivas K, Sabari BR, Coffey EL, et al. Enhancer Features That Drive Formation of Transcriptional Condensates. Mol Cell. 2019;75(3):549.
  • Liu Z, Merkurjev D, Yang F, et al. Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex. Cell. 2014;159(2):358–373.
  • Métivier R, Penot G, Hübner MR, et al. Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter. Cell. 2003;115(6):751–763.
  • Sanchez-Burgos I, Joseph JA, Collepardo-Guevara R, et al. Size Conservation Emerges Spontaneously in Biomolecular Condensates Formed by Scaffolds and Surfactant Clients. Sci Reports. 2021;11(1):1–10.
  • Hong K, Song D, Jung Y. Behavior Control of Membrane-Less Protein Liquid Condensates with Metal Ion-Induced Phase Separation. Nat Commun. 2020;11(1):1–12.
  • Ryu JK, Bouchoux C, Liu HW, et al. Bridging-Induced Phase Separation Induced by Cohesin SMC Protein Complexes. Sci Adv. 2021;7(7). DOI:10.1126/SCIADV.ABE5905/SUPPL_FILE/ABE5905_SM.PDF
  • Lee R, Kang MK, Kim YJ, et al. CTCF-Mediated Chromatin Looping Provides a Topological Framework for the Formation of Phase-Separated Transcriptional Condensates. Nucleic Acids Res. 2022;50(1):207–226.
  • Wang W, Qiao S, Li G, et al. A Histidine Cluster Determines YY1-Compartmentalized Coactivators and Chromatin Elements in Phase-Separated Enhancer Clusters. Nucleic Acids Res. 2022;50(9):4917–4937.
  • Mitrea DM, Kriwacki RW. Phase Separation in Biology; Functional Organization of a Higher Order. Cell Commun Signal. 2016;14(1):1–20.
  • Boeynaems S, Alberti S, Fawzi NL, et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018;28(6):420–435.
  • Harami GM, Kovács ZJ, Pancsa R, et al. Phase Separation by SsDNA Binding Protein Controlled via Protein-Protein and Protein-DNA Interactions. Proc Natl Acad Sci U S A. 2020;117(42):26206–26217.
  • Seif E, Kang JJ, Sasseville C, et al. Phase Separation by the Polyhomeotic Sterile Alpha Motif Compartmentalizes Polycomb Group Proteins and Enhances Their Activity. Nat Commun. 2020;11(1):1–19.
  • Marianayagam NJ, Sunde M, Matthews JM. The Power of Two: Protein Dimerization in Biology. Trends Biochem Sci. 2004;29(11):618–625.
  • Jiang BH, Rue E, Wang GL, et al. DNA Binding, and Transactivation Properties of Hypoxia-Inducible Factor 1. J Biol Chem. 1996;271(30):17771–17778.
  • Hai T, Curran T. Cross-Family Dimerization of Transcription Factors Fos/Jun and ATF/CREB Alters DNA Binding Specificity. Proc Natl Acad Sci U S A. 1991;88(9):3720.
  • Van Der Lee R, Buljan M, Lang B, et al. Classification of Intrinsically Disordered Regions and Proteins. Chem Rev. 2014;114(13):6589–6631.
  • Uversky VN. What Does It Mean to Be Natively Unfolded?. Eur J Biochem. 2002;269(1):2–12.
  • Holehouse AS, Pappu RV. Functional Implications of Intracellular Phase Transitions. Biochemistry. 2018;57(17):2415–2423.
  • Franzmann TM, Alberti S. Prion-like Low-Complexity Sequences: Key Regulators of Protein Solubility and Phase Behavior. J Biol Chem. 2019;294(18):7128–7136.
  • Pak CW, Kosno M, Holehouse AS, et al. Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol Cell. 2016;63(1):72–85.
  • Guo X, Bulyk ML, Hartemink AJ. Intrinsic Disorder within and Flanking the DNA-Binding Domains of Human Transcription Factors. Pacific Symp Biocomput. 2012:104–115. DOI:10.1142/9789814366496_0011
  • Van Roey K, Uyar B, Weatheritt RJ, et al. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev. 2014;114(13):6733–6778.
  • Lau DHW, Hogseth M, Phillips EC, et al. Critical Residues Involved in Tau Binding to Fyn: Implications for Tau Phosphorylation in Alzheimer’s Disease. Acta Neuropathol Commun. 2016;4(1):1–13.
  • Frank F, Liu X, Ortlund EA. Glucocorticoid Receptor Condensates Link DNA-Dependent Receptor Dimerization and Transcriptional Transactivation. Proc Natl Acad Sci U S A. 2021;118(30):e2024685118.
  • Lyons H, Veettil RT, Pradhan P, et al. Functional Partitioning of Transcriptional Regulators by Patterned Charge Blocks. Cell. 2023;186(2):327–345.e28.
  • Xie H, Vucetic S, Iakoucheva LM, et al. Functional Anthology of Intrinsic Disorder. 3. Ligands, Post-Translational Modifications, and Diseases Associated with Intrinsically Disordered Proteins. J Proteome Res. 2007;6(5):1917–1932.
  • Mao AH, Crick SL, Vitalis A, et al. Net Charge per Residue Modulates Conformational Ensembles of Intrinsically Disordered Proteins. Proc Natl Acad Sci U S A. 2010;107(18):8183–8188.
  • Kuravi S, Lan TH, Barik A, et al. Sequence Determinants of Compaction in Intrinsically Disordered Proteins. Biophys J. 2010;98(10):2383.
  • Monahan Z, Ryan VH, Janke AM, et al. Phosphorylation of the FUS Low‐complexity Domain Disrupts Phase Separation, Aggregation, and Toxicity. EMBO J. 2017;36(20):2951.
  • Silva L, da AG, Simonetti F, et al. Disease-Linked TDP-43 Hyperphosphorylation Suppresses TDP-43 Condensation and Aggregation. EMBO J. 2022;41(8):e108443.
  • Ambadipudi S, Biernat J, Riedel D, et al. Liquid-Liquid Phase Separation of the Microtubule-Binding Repeats of the Alzheimer-Related Protein Tau. Nat Commun. 2017;8:1.
  • Larson AG, Elnatan D, Keenen MM, et al. Liquid Droplet Formation by HP1α Suggests a Role for Phase Separation in Heterochromatin. Nat. 2017;547(7662):236–240.
  • Wiedner HJ, Giudice J. It’s Not Just a Phase: Function and Characteristics of RNA-Binding Proteins in Phase Separation. Nat Struct Mol Biol. 2021;28(6):465–473.
  • Sharp PA, Chakraborty AK, Henninger JE, et al. RNA in Formation and Regulation of Transcriptional Condensates. RNA. 2022;28(1):52–57.
  • Langdon EM, Qiu Y, Niaki AG, et al. MRNA Structure Determines Specificity of a PolyQ-Driven Phase Separation. Science. 2018;360(6391):922–927.
  • Alshareedah I, Moosa MM, Raju M, et al. Phase Transition of RNA−protein Complexes into Ordered Hollow Condensates. Proc Natl Acad Sci U S A. 2020;117(27):15650–15658.
  • Maharana S, Wang J, Papadopoulos DK, et al. RNA Buffers the Phase Separation Behavior of Prion-like RNA Binding Proteins. Science. 2018;360(6391):918–921.
  • Zhang H, Elbaum-Garfinkle S, Langdon EM, et al. RNA Controls PolyQ Protein Phase Transitions. Mol Cell. 2015;60(2):220–230.
  • Shevtsov SP, Dundr M. Nucleation of Nuclear Bodies by RNA. Nat Cell Biol. 2011;13(2):167–173.
  • Elbaum-Garfinkle S, Kim Y, Szczepaniak K, et al. The Disordered P Granule Protein LAF-1 Drives Phase Separation into Droplets with Tunable Viscosity and Dynamics. Proc Natl Acad Sci U S A. 2015;112(23):7189–7194.
  • Boeynaems S, Holehouse AS, Weinhardt V, et al. Spontaneous Driving Forces Give Rise to Protein−RNA Condensates with Coexisting Phases and Complex Material Properties. Proc Natl Acad Sci U S A. 2019;116(16):7889–7898.
  • Cai D, Feliciano D, Dong P, et al. Phase Separation of YAP Reorganizes Genome Topology for Long-Term YAP Target Gene Expression. Nat Cell Biol. 2019;21(12):1578.
  • Cléry A, Allain H-T, F FROM structure to function of rna binding domains. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000–2013. Internet: https://www.ncbi.nlm.nih.gov/books/NBK63528/
  • Lin Y, Protter DSW, Rosen MK, et al. Formation and Maturation of Phase Separated Liquid Droplets by RNA Binding Proteins. Mol Cell. 2015;60(2):208.
  • Wang J, Choi JM, Holehouse AS, et al. A Molecular Grammar Governing the Driving Forces for Phase separation of Prion-like RNA Binding Proteins. Cell. 2018;174(3):688.
  • Thandapani P, O’Connor TR, Bailey TL, et al. Mol. Cell. 2013;50(5):613–623. DOI:10.1016/J.MOLCEL.2013.05.021
  • Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif Regions in RNA Binding and Phase Separation. J Mol Biol. 2018;430(23):4650–4665.
  • Oksuz O, Henninger JE, Warneford-Thomson R, et al. Transcription Factors Interact with RNA to Regulate Genes. bioRxiv; 202209(27):509776. DOI:10.1101/2022.09.27.509776.
  • Hofweber M, Hutten S, Bourgeois B, et al. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell. 2018;173(3):706–719.e13.
  • Li W, Notani D, Ma Q, et al. Functional Importance of ERNAs for Estrogen-Dependent Transcriptional Activation Events. Nature. 2013;498(7455):516.
  • Saldaña-Meyer R, Rodriguez-Hernaez J, Escobar T, et al. RNA Interactions Are Essential for CTCF-Mediated Genome Organization. Mol Cell. 2019;76(3):412–422.e5.
  • Sigova AA, Abraham BJ, Ji X, et al. Transcription Factor Trapping by RNA in Gene Regulatory Elements. Science. 2015;350(6263):978.
  • Hnisz D, Shrinivas K, Young RA, et al. A Phase Separation Model for Transcriptional Control. Cell. 2017;169(1):13–23.
  • Nair SJ, Yang L, Meluzzi D, et al. Phase Separation of Ligand-Activated Enhancers Licenses Cooperative Chromosomal Enhancer Assembly. Nat Struct Mol Biol. 2019;26(3):193–203.
  • Tauber D, Tauber G, Khong A, et al. Modulation of RNA Condensation by the DEAD-Box Protein EIF4A. Cell. 2020;180(3):411–426.e16.
  • Jiang X, Liu B, Nie Z, et al. The Role of M6A Modification in the Biological Functions and Diseases. Signal Transduct Target Ther. 2021;6(1):1–16.
  • Arguello AE, Deliberto AN, Kleiner RE. RNA Chemical Proteomics Reveals the N6-Methyladenosine (M6A)-Regulated Protein-RNA Interactome. J Am Chem Soc. 2017;139(48):17249–17252.
  • Ries RJ, Zaccara S, Klein P, et al. M6A Enhances the Phase Separation Potential of MRNA. Nature. 2019;571(7765):424–428.
  • Lee JH, Wang R, Xiong F, et al. Enhancer RNA M6A Methylation Facilitates Transcriptional Condensate Formation and Gene Activation. Mol Cell. 2021;81(16):3368–3385.e9.
  • Henninger JE, Oksuz O, Shrinivas K, et al. RNA-Mediated Feedback Control of Transcriptional Condensates. Cell. 2021;184(1):207–225.e24.
  • Garcia-Jove Navarro M, Kashida S, Chouaib R, et al. RNA Is a Critical Element for the Sizing and the Composition of Phase-Separated RNA–Protein Condensates. Nat Commun. 2019;10(1):1–13.
  • Hnisz D, Abraham BJ, Lee TI, et al. Super-Enhancers in the Control of Cell Identity and Disease. Cell. 2013;155(4):934–947.
  • Whyte WA, Orlando DA, Hnisz D, et al. Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell. 2013;153(2):307–319.
  • Plank JL, Dean A. Enhancer Function: Mechanistic and Genome-Wide Insights Come Together. Mol Cell. 2014;55(1):5–14.
  • Ong CT, Corces VG. Enhancer Function: New Insights into the Regulation of Tissue-Specific Gene Expression. Nat Rev Genet. 2011;12(4):283–293.
  • Li W, Notani D, Rosenfeld MG. Enhancers as Non-Coding RNA Transcription Units: Recent Insights and Future Perspectives. Nat Rev Genet. 2016;17(4):207–223.
  • Ghazi A, VijayRaghavan K. Developmental Biology. Control by Combinatorial Codes. Nature. 2000;408(6811):419–420.
  • Flores GV, Duan H, Yan H, et al. Combinatorial Signaling in the Specification of Unique Cell Fates. Cell. 2000;103(1):75–85.
  • Halfon MS, Carmena A, Gisselbrecht S, et al. Ras Pathway Specificity Is Determined by the Integration of Multiple Signal-Activated and Tissue-Restricted Transcription Factors. Cell. 2000;103(1):63–74.
  • Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26806/
  • Vuzman D, Azia A, Levy Y. Searching DNA via a “Monkey Bar” Mechanism: The Significance of Disordered Tails. J Mol Biol. 2010;396(3):674–684.
  • Garcia DA, Johnson TA, Presman DM, et al. An Intrinsically Disordered Region-Mediated Confinement State Contributes to the Dynamics and Function of Transcription Factors. Mol Cell. 2021;81(7):1484–1498.e6.
  • Gibson BA, Doolittle LK, Schneider MWG, et al. Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell. 2019;179(2):470–484.e21.
  • Clapier CR, Iwasa J, Cairns BR, et al. Mechanisms of Action and Regulation of ATP-Dependent Chromatin-Remodelling Complexes. Nat Rev Mol Cell Biol. 2017;18(7):407–422.
  • Swinstead EE, Paakinaho V, Presman DM, et al. Pioneer Factors and ATP-Dependent Chromatin remodeling factors interact dynamically: a new perspective: multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-Dependent chromatin remodeling factors. BioEssays. 2016;38(11):1150.
  • Shakya A, Park S, Rana N, et al. Liquid-Liquid phase separation of histone proteins in cells: role in chromatin organization. Biophys J. 2020;118(3):753–764.
  • Turner AL, Watson M, Wilkins OG, et al. Highly disordered Histone H1−DNA Model complexes and their condensates. Proc Natl Acad Sci U S A. 2018;115(47):11964–11969.
  • Bannister AJ, Kouzarides T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011;21(3):381–395.
  • Wang L, Gao Y, Zheng X, et al. Histone Modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. 2019;76(4):646–659.e6. Mol. Cell. DOI:10.1016/J.MOLCEL.2019.08.019
  • Rodriguez J, Ren G, Day CR, et al. Intrinsic Dynamics of a Human Gene Reveal the Basis of Expression Heterogeneity. Cell. 2019;176(1–2):213–226.e18.
  • Dultz E, Mancini R, Polles G, et al. Quantitative Imaging of Chromatin Decompaction in Living Cells. Mol Biol Cell. 2018;29(14):1763.
  • Ishihara S, Sasagawa Y, Kameda T, et al. Local States of Chromatin Compaction at Transcription Start Sites Control Transcription Levels. Nucleic Acids Res. 2021;49(14):8007–8023.
  • Benabdallah NS, Williamson I, Illingworth RS, et al. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell. 2019;76(3):473–484.e7.
  • Alexander JM, Guan J, Li B, et al. Live-Cell Imaging Reveals Enhancer-Dependent Sox2 Transcription in the Absence of Enhancer Proximity. Elife. 2019:8. DOI:10.7554/ELIFE.41769
  • Lu H, Yu D, Hansen AS, et al. Phase-Separation Mechanism for C-Terminal Hyperphosphorylation of RNA Polymerase II. Nat. 2018;558(7709):318–323.
  • Boehning M, Dugast-Darzacq C, Rankovic M, et al. RNA Polymerase II Clustering through Carboxy-Terminal Domain Phase Separation. Nat Struct Mol Biol. 2018;25(9):833–840.
  • Rosonina E, Blencowe BJ. Analysis of the Requirement for RNA Polymerase II CTD Heptapeptide Repeats in Pre-MRNA Splicing and 3´-End Cleavage. RNA. 2004;10(4):581.
  • Quintero-Cadena P, Lenstra TL, Sternberg PW. RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. Mol Cell. 2020;79(2):207–220.e8.
  • Sawicka A, Villamil G, Lidschreiber M, et al. Transcription Activation Depends on the Length of the RNA Polymerase II C-Terminal Domain. EMBO J. 2021;40(9):e107015.
  • Guo YE, Manteiga JC, Henninger JE, et al. P(1) Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, et al. P(1Nature. 2019;572(7770):543. DOI:10.1038/S41586-019-1464-0
  • Jobe F, Simpson J, Hawes P, et al. Respiratory Syncytial Virus Sequesters NF-ΚB Subunit P65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol. 2020;94:22.
  • Sehgal PB. Biomolecular Condensates in cancer cell biology: interleukin-6-induced cytoplasmic and nuclear STAT3/PY-STAT3 condensates in hepatoma cells. Contemp Oncol (Poznan Poland). 2019;23(1):16–22.
  • Johnson TA, Paakinaho V, Kim S, et al. Genome-Wide Binding Potential and Regulatory Activity of the Glucocorticoid Receptor’s Monomeric and Dimeric Forms. Nat Commun. 2021;12(1):1–14.
  • F Z, M B, S M, et al. Dynamic Phase Separation of the Androgen Receptor and Its Coactivators Key to Regulate Gene Expression. Nucleic Acids Res. 2022;1(1256879). gkac1158–gkac1158. DOI:10.1093/NAR/GKAC1158
  • Wei Y, Luo H, Yee PP, et al. Paraspeckle protein NONO Promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci. 2021;8(24). DOI:10.1002/ADVS.202102653
  • Stortz M, Oses C, Vázquez Echegaray C, et al. SOX2 modulates the nuclear organization and transcriptional activity of the glucocorticoid receptor. J Mol Biol. 2022;434:24.
  • Moorthy SD, Davidson S, Shchuka VM, et al. Enhancers And super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Res. 2017;27(2):246–258.
  • Klosin A, Oltsch F, Harmon T, et al. Phase separation provides a mechanism to reduce noise in cells. Science. 2020;367(6476):464–468.
  • Muñoz-Gil G, Romero-Aristizabal C, Mateos N, et al. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells. Proc Natl Acad Sci U S A. 2022;119:31.
  • Thanos D, Maniatis T. Virus Induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell. 1995;83(7):1091–1100.
  • Choi J, Lysakovskaia K, Stik G, et al. Evidence for Additive and Synergistic Action of Mammalian Enhancers during Cell Fate Determination. Elife. 2021:10. DOI:10.7554/ELIFE.65381
  • Choi KJ; Quan MD; Qi C; Lee JH; Tsoi PS; Zahabiyon M; Bajic A; Hu L; Prasad BVV; Liao SCJ; et al. NANOG Prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency. Nat. Cell Biol. 2022, 24 (5), 737–747. DOI:10.1038/s41556-022-00896-x
  • Avsec Ž, Weilert M, Shrikumar A, et al. Base-Resolution Models of transcription-factor binding reveal soft motif syntax. Nat Genet. 2021;53(3):354–366.
  • Bentsen M, Heger V, Schultheis H, et al. TF-COMB – Discovering grammar of transcription factor binding sites. Comput Struct Biotechnol J. 2022;20:4040–4051.
  • Robinson JLL, MacArthur S, Ross-Innes CS, et al. Androgen Receptor Driven Transcription in Molecular Apocrine Breast Cancer Is Mediated by FoxA1. EMBO J. 2011;30(15):3019–3027.
  • Tsai A, Alves MRP, Crocker J. Multi-Enhancer Transcriptional Hubs Confer Phenotypic Robustness. Elife. 2019:8. DOI:10.7554/ELIFE.45325
  • Charest J, Daniele T, Wang J, et al. Combinatorial Action of Temporally Segregated Transcription Factors. Dev Cell. 2020;55(4):483.
  • Adams EJ; Karthaus WR; Hoover E; Liu D; Gruet A; Zhang Z; Cho H; DiLoreto R; Chhangawala S; Liu Y; et al. FOXA1 Mutations Alter Pioneering Activity, Differentiation and Prostate Cancer Phenotypes. Nat. 2019 5717765 2019, 571 (7765), 408–412. DOI:10.1038/s41586-019-1318-9
  • Basu S, Mackowiak SD, Niskanen H, et al. Unblending of Transcriptional condensates in human repeat expansion disease. Cell. 2020;181(5):1062–1079.e30.
  • Zaret KS, Carroll JS. Pioneer Transcription Factors: Establishing Competence for Gene Expression. Genes Dev. 2011;25(21):2227.
  • Mansour MR, Abraham BJ, Anders L, et al. Oncogene Regulation. An Oncogenic Super-Enhancer Formed through Somatic Mutation of a Noncoding Intergenic Element. Science. 2014;346(6215):1373–1377.
  • Chapuy B, McKeown MR, Lin CY, et al. Discovery and Characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. 2013;24(6):777–790. Cancer Cell. DOI:10.1016/J.CCR.2013.11.003