1,908
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes

, &
Article: 2229642 | Received 18 Apr 2023, Accepted 21 Jun 2023, Published online: 19 Jul 2023

References

  • Bell SP, Labib K. Chromosome duplication in Saccharomyces cerevisiae. Genetics. 2016; 203(3):1027–26. doi: 10.1534/genetics.115.186452
  • Costa A, Diffley JFX. The initiation of eukaryotic DNA replication. Annu Rev Biochem. 2022;91(1):107–131. doi: 10.1146/annurev-biochem-072321-110228
  • Czajkowsky DM, Liu J, Hamlin JL, et al. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol. 2008;375(1):12–19. doi: 10.1016/j.jmb.2007.10.046
  • Hawkins M, Retkute R, Muller CA, et al. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep. 2013;5(4):1132–1141. doi: 10.1016/j.celrep.2013.10.014
  • Saner N, Karschau J, Natsume T, et al. Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Bio. 2013;202(7):1001–1012. doi: 10.1083/jcb.201306143
  • Fragkos M, Ganier O, Coulombe P, et al. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol. 2015;16(6):360–374. doi: 10.1038/nrm4002
  • Ferguson BM, Brewer BJ, Reynolds AE, et al. A yeast origin of replication is activated late in S phase. Cell. 1991;65(3):507–515. doi: 10.1016/0092-8674(91)90468-e
  • Raghuraman MK, Winzeler EA, Collingwood D, et al. Replication dynamics of the yeast genome. Science. 2001;294(5540):115–121. doi: 10.1126/science.294.5540.115
  • Creager RL, Li Y, MacAlpine DM. SnapShot: origins of DNA replication. Cell. 2015;161(2):418–418 e411. doi: 10.1016/j.cell.2015.03.043
  • Leonard AC, Mechali M. DNA replication origins. Cold Spring Harb Perspect Biol. 2013; 5(10):a010116. doi: 10.1101/cshperspect.a010116
  • Azvolinsky A, Giresi PG, Lieb JD, et al. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell. 2009;34(6):722–734. doi: 10.1016/j.molcel.2009.05.022
  • Barlow JH, Nussenzweig A. Replication initiation and genome instability: a crossroads for DNA and RNA synthesis. Cell Mol Life Sci. 2014; 71(23):4545–4559. doi: 10.1007/s00018-014-1721-1
  • Garcia-Muse T, Aguilera A. Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol. 2016;17(9):553–563. doi: 10.1038/nrm.2016.88
  • Knott SR, Viggiani CJ, Aparicio OM. To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics. 2009;4(6):362–365. doi: 10.4161/epi.4.6.9712
  • Liu B, Alberts BM. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science. 1995;267(5201):1131–1137. doi: 10.1126/science.7855590
  • Sankar TS, Wastuwidyaningtyas BD, Dong Y, et al. The nature of mutations induced by replication-transcription collisions. Nature. 2016;535(7610):178–181. doi: 10.1038/nature18316
  • Kermi C, Lo Furno E, Maiorano D. Regulation of DNA replication in early embryonic cleavages. Genes (Basel). 2017;8(1): 8 1 42. doi:10.3390/genes8010042.
  • Rivera-Mulia JC, Buckley Q, Sasaki T, et al. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Res. 2015;25(8):1091–1103. doi: 10.1101/gr.187989.114
  • Rivera-Mulia JC, Sasaki T, Trevilla-Garcia C, et al. Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Adv. 2019;3(21):3201–3213. doi: 10.1182/bloodadvances.2019000641
  • Dimitrova DS, Gilbert DM. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell. 1999; 4(6):983–993. doi: 10.1016/s1097-2765(00)80227-0
  • Raghuraman MK, Brewer BJ, Fangman WL. Cell cycle-dependent establishment of a late replication program. Science. 1997; 276(5313):806–809. doi: 10.1126/science.276.5313.806
  • Ferguson BM, Fangman WL. A position effect on the time of replication origin activation in yeast. Cell. 1992; 68(2):333–339. doi: 10.1016/0092-8674(92)90474-q
  • Vogelauer M, Rubbi L, Lucas I, et al. Histone acetylation regulates the time of replication origin firing. Mol Cell. 2002;10(5):1223–1233. doi: 10.1016/s1097-2765(02)00702-5
  • Yoshida K, Bacal J, Desmarais D, et al. The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast. Mol Cell. 2014;54(4):691–697. doi: 10.1016/j.molcel.2014.04.032
  • Collart C, Allen GE, Bradshaw CR, et al. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013;341(6148):893–896. doi: 10.1126/science.1241530
  • Mantiero D, Mackenzie A, Donaldson A, et al. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. Embo J. 2011;30(23):4805–4814. doi: 10.1038/emboj.2011.404
  • Tanaka S, Nakato R, Katou Y, et al. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21(24):2055–2063. doi: 10.1016/j.cub.2011.11.038
  • Ausiannikava D, Allers T. Diversity of DNA replication in the archaea. Genes (Basel). 2017;8(2): Genes 8 2 56. doi:10.3390/genes8020056.
  • Bleichert F, Botchan MR, Berger JM. Mechanisms for initiating cellular DNA replication. Science. 2017;355(6327). doi: 10.1126/science.aah6317
  • Ekundayo B, Bleichert F. Origins of DNA replication. PLoS Genet. 2019; 15(9):e1008320. doi: 10.1371/journal.pgen.1008320
  • Wolanski M, Donczew R, Zawilak-Pawlik A, et al. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol. 2014;5:735. doi: 10.3389/fmicb.2014.00735
  • Jacob F, Brenner S, Cuzin F. On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol. 1963;28:329–348. doi: 10.1101/SQB.1963.028.01.048
  • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71(1):333–374. doi: 10.1146/annurev.biochem.71.110601.135425
  • Brewer BJ, Fangman WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987;51(3):463–471. doi: 10.1016/0092-8674(87)90642-8
  • Huberman JA, Spotila LD, Nawotka KA, et al. The in vivo replication origin of the yeast 2μm plasmid. Cell. 1987;51(3):473–481. doi: 10.1016/0092-8674(87)90643-X
  • Stinchcomb D, Struhl K, Davis R. Isolation and characterisation of a yeast chromosomal replicator. Nature. 1979;282(5734):39–43. doi: 10.1038/282039a0
  • Marahrens Y, Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 1992;255(5046):817–823. doi: 10.1126/science.1536007
  • Rao H, Stillman B. The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators. Proc Natl Acad Sci U S A. 1995; 92(6):2224–2228. doi: 10.1073/pnas.92.6.2224
  • Broach J, Li Y-Y, Feldman J, et al. Localization and sequence analysis of yeast origins of DNA replication, 47 Pt 2. Cold Spring Harbor Laboratory Press: Cold Spring Harbor Symposia on Quantitative Biology; 1983. p. 1165–73.
  • Celniker S, Sweder K, Srienc F, et al. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol. 1984;4(11):2455–2466. doi: 10.1128/mcb.4.11.2455-2466.1984
  • Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128–134. doi: 10.1038/357128a0
  • Li N, Lam WH, Zhai Y, et al. Structure of the origin recognition complex bound to DNA replication origin. Nature. 2018;559(7713):217–222. doi: 10.1038/s41586-018-0293-x
  • Rowley A, Cocker JH, Harwood J, et al. Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. Embo J. 1995;14(11):2631–2641. doi: 10.1002/j.1460-2075.1995.tb07261.x
  • Van Houten JV, Newlon CS. Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol. 1990;10(8):3917–3925. doi: 10.1128/MCB.10.8.3917
  • Theis JF, Newlon CS. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci U S A. 1997; 94(20):10786–10791. doi: 10.1073/pnas.94.20.10786
  • Breier AM, Chatterji S, Cozzarelli NR. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol. 2004; 5(4):R22. doi: 10.1186/gb-2004-5-4-r22
  • Dao FY, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics. 2019;35(12):2075–2083. doi: 10.1093/bioinformatics/bty943
  • Singh VK, Kumar V, Krishnamachari A. Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: multi-view ensemble learning (MEL) approach. Biosystems. 2018;163:59–69. doi: 10.1016/j.biosystems.2017.12.005
  • Huang Y, Kowalski D. WEB-THERMODYN: sequence analysis software for profiling DNA helical stability. Nucleic Acids Res. 2003;31(13):3819–3821. doi: 10.1093/nar/gkg562
  • Natale DA, Umek RM, Kowalski D. Ease of DNA unwinding is a conserved property of yeast replication origins. Nucleic Acids Res. 1993; 21(3):555–560. doi: 10.1093/nar/21.3.555
  • Umek RM, Kowalski D. The DNA unwinding element in a yeast replication origin functions independently of easily unwound sequences present elsewhere on a plasmid. Nucleic Acids Res. 1990; 18(22):6601–6605. doi: 10.1093/nar/18.22.6601
  • Chang F, Theis JF, Miller J, et al. Analysis of chromosome III replicators reveals an unusual structure for the ARS318 silencer origin and a conserved WTW sequence within the origin recognition complex binding site. Mol Cell Biol. 2008;28(16):5071–5081. doi: 10.1128/MCB.00206-08
  • Eaton ML, Galani K, Kang S, et al. Conserved nucleosome positioning defines replication origins. Genes Dev. 2010;24(8):748–753. doi: 10.1101/gad.1913210
  • Xu W, Aparicio JG, Aparicio OM, et al. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics. 2006;7(1):276. doi: 10.1186/1471-2164-7-276
  • Yuan Z, Riera A, Bai L, et al. Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1. Nat Struct Mol Biol. 2017;24(3):316–324. doi: 10.1038/nsmb.3372
  • Lee CSK, Cheung MF, Li J, et al. Humanizing the yeast origin recognition complex. Nat Commun. 2021;12(1):33. doi: 10.1038/s41467-020-20277-y
  • Coster G, Diffley JF. Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science. 2017;357(6348):314–318. doi: 10.1126/science.aan0063
  • Lipford JR, Bell SP. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell. 2001; 7(1):21–30. doi: 10.1016/s1097-2765(01)00151-4
  • Palzkill TG, Newlon CS. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell. 1988;53(3):441–450. doi: 10.1016/0092-8674(88)90164-X
  • Wilmes GM, Bell SP. The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc Nat Acad Sci. 2002;99(1):101–106. doi: 10.1073/pnas.012578499
  • Zou L, Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000;20(9):3086–3096. doi: 10.1128/MCB.20.9.3086-3096.2000
  • Diffley JF, Stillman B. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. Proc Natl Acad Sci U S A. 1988; 85(7):2120–2124. doi: 10.1073/pnas.85.7.2120
  • Ganapathi M, Palumbo MJ, Ansari SA, et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res. 2011;39(6):2032–2044. doi: 10.1093/nar/gkq1161
  • Diffley JF, Cocker JH. Protein-DNA interactions at a yeast replication origin. Nature. 1992;357(6374):169–172. doi: 10.1038/357169a0
  • Chang VK, Donato JJ, Chan CS, et al. Mcm1 promotes replication initiation by binding specific elements at replication origins. Mol Cell Biol. 2004;24(14):6514–6524. doi: 10.1128/MCB.24.14.6514-6524.2004
  • Irlbacher H, Franke J, Manke T, et al. Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression. Genes Dev. 2005;19(15):1811–1822. doi: 10.1101/gad.334805
  • Walker SS, Francesconi SC, Eisenberg S. A DNA replication enhancer in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990; 87(12):4665–4669. doi: 10.1073/pnas.87.12.4665
  • Weiβ M, Chanou A, Schauer T, et al. Single-copy locus proteomics of early- and late-firing DNA replication origins identifies a role of Ask1/DASH complex in replication timing control. Cell Rep. 2023;42(2):112045. doi: 10.1016/j.celrep.2023.112045
  • Aladjem MI, Rodewald LW, Kolman JL, et al. Genetic dissection of a mammalian replicator in the human beta-globin locus. Science. 1998;281(5379):1005–1009. doi: 10.1126/science.281.5379.1005
  • Altman AL, Fanning E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol Cell Biol. 2004; 24(10):4138–4150. doi: 10.1128/MCB.24.10.4138-4150.2004
  • Liu G, Malott M, Leffak M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol Cell Biol. 2003; 23(5):1832–1842. doi: 10.1128/MCB.23.5.1832-1842.2003
  • Malott M, Leffak M. Activity of the c-myc replicator at an ectopic chromosomal location. Mol Cell Biol. 1999; 19(8):5685–5695. doi: 10.1128/MCB.19.8.5685
  • Paixao S, Colaluca IN, Cubells M, et al. Modular structure of the human lamin B2 replicator. Mol Cell Biol. 2004;24(7):2958–2967. doi: 10.1128/MCB.24.7.2958-2967.2004
  • Wang L, Lin CM, Brooks S, et al. The human beta-globin replication initiation region consists of two modular independent replicators. Mol Cell Biol. 2004;24(8):3373–3386. doi: 10.1128/MCB.24.8.3373-3386.2004
  • Gilbert DM, Miyazawa H, DePamphilis ML. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol Cell Biol. 1995; 15(6):2942–2954. doi: 10.1128/MCB.15.6.2942
  • Besnard E, Babled A, Lapasset L, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol. 2012;19(8):837–844. doi: 10.1038/nsmb.2339
  • Cayrou C, Ballester B, Peiffer I, et al. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 2015;25(12):1873–1885. doi: 10.1101/gr.192799.115
  • Cayrou C, Coulombe P, Vigneron A, et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2011;21(9):1438–1449. doi: 10.1101/gr.121830.111
  • Dellino GI, Cittaro D, Piccioni R, et al. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res. 2013;23(1):1–11. doi: 10.1101/gr.142331.112
  • Eaton ML, Prinz JA, MacAlpine HK, et al. Chromatin signatures of the Drosophila replication program. Genome Res. 2011;21(2):164–174. doi: 10.1101/gr.116038.110
  • Hayashi M, Katou Y, Itoh T, et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. Embo J. 2007;26(5):1327–1339. doi: 10.1038/sj.emboj.7601585
  • Lubelsky Y, Sasaki T, Kuipers MA, et al. Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone. Nucleic Acids Res. 2011;39(8):3141–3155. doi: 10.1093/nar/gkq1276
  • MacAlpine HK, Gordan R, Powell SK, et al. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 2010;20(2):201–211. doi: 10.1101/gr.097873.109
  • Martin MM, Ryan M, Kim R, et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 2011;21(11):1822–1832. doi: 10.1101/gr.124644.111
  • Miotto B, Ji Z, Struhl K. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci U S A. 2016; 113(33):E4810–4819. doi: 10.1073/pnas.1609060113
  • Pourkarimi E, Bellush JM, Whitehouse I. Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in C. elegans. Elife. 2016;5. doi: 10.7554/eLife.21728
  • Rodriguez-Martinez M, Pinzon N, Ghommidh C, et al. The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans. Nat Struct Mol Biol. 2017;24(3):290–299. doi: 10.1038/nsmb.3363
  • Akerman I, Kasaai B, Bazarova A, et al. A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun. 2020;11(1):4826. doi: 10.1038/s41467-020-18527-0
  • Comoglio F, Schlumpf T, Schmid V, et al. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins. Cell Rep. 2015;11(5):821–834. doi: 10.1016/j.celrep.2015.03.070
  • Guilbaud G, Murat P, Wilkes HS, et al. Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation. Nucleic Acids Res. 2022;50(13):7436–7450. doi: 10.1093/nar/gkac555
  • Edenberg HJ, Huberman JA. Eukaryotic chromosome replication. Annu Rev Genet. 1975;9(1):245–284. doi: 10.1146/annurev.ge.09.120175.001333
  • Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–1831. doi: 10.1101/gr.136184.111
  • Wyrick JJ, Aparicio JG, Chen T, et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science. 2001;294(5550):2357–2360. doi: 10.1126/science.1066101
  • Chesnokov IN. Multiple functions of the origin recognition complex. Int Rev Cytol. 2007;256:69–109. doi: 10.1016/S0074-7696(07)56003-1
  • Hemerly AS, Prasanth SG, Siddiqui K, et al. Orc1 controls centriole and centrosome copy number in human cells. Science. 2009;323(5915):789–793. doi: 10.1126/science.1166745
  • Kirstein N, Buschle A, Wu X, et al. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. Elife. 2021;10. doi: 10.7554/eLife.62161
  • Smith DJ, Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature. 2012;483(7390):434–438. doi: 10.1038/nature10895
  • Cadoret JC, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A. 2008;105(41):15837–15842. doi: 10.1073/pnas.0805208105
  • Sequeira-Mendes J, Díaz-Uriarte R, Apedaile A, et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 2009;5(4):e1000446. doi: 10.1371/journal.pgen.1000446
  • Mesner LD, Crawford EL, Hamlin JL. Isolating apparently pure libraries of replication origins from complex genomes. Molecular Cell. 2006;21(5):719–726. doi: 10.1016/j.molcel.2006.01.015
  • Muller CA, Boemo MA, Spingardi P, et al. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat Methods. 2019;16(5):429–436. doi: 10.1038/s41592-019-0394-y
  • Lam ET, Hastie A, Lin C, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nature Biotechnol. 2012;30(8):771–776. doi: 10.1038/nbt.2303
  • Panning MM, Gilbert DM. Spatio‐temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J Cell Biochem. 2005;95(1):74–82. doi: 10.1002/jcb.20395
  • Wilson KA, Elefanty AG, Stanley EG, et al. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification. Cell Cycle. 2016;15(18):2464–2475. doi: 10.1080/15384101.2016.1203492
  • Wang W, Klein KN, Proesmans K, et al. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Molecular Cell. 2021;81(14):2975–2988. doi: 10.1016/j.molcel.2021.05.024 e2976.
  • Dijkwel PA, Wang S, Hamlin JL. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol Cell Biol. 2002; 22(9):3053–3065. doi: 10.1128/MCB.22.9.3053-3065.2002
  • Lu L, Zhang H, Tower J. Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev. 2001; 15(2):134–146. doi: 10.1101/gad.822101
  • Zhang H, Tower J. Sequence requirements for function of the Drosophila chorion gene locus ACE3 replicator and ori-beta origin elements. Development. 2004;131(9):2089–2099. doi: 10.1242/dev.01064
  • Demczuk A, Gauthier MG, Veras I, et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol. 2012;10(7):e1001360. doi: 10.1371/journal.pbio.1001360
  • Prioleau MN, MacAlpine DM. DNA replication origins-where do we begin? Genes Dev. 2016;30(15):1683–1697. doi: 10.1101/gad.285114.116
  • Cayrou C, Coulombe P, Puy A, et al. New insights into replication origin characteristics in metazoans. Cell Cycle. 2012;11(4):658–667. doi: 10.4161/cc.11.4.19097
  • Langley AR, Graf S, Smith JC, et al. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq). Nucleic Acids Res. 2016;44(21):10230–10247. doi: 10.1093/nar/gkw760
  • Valton AL, Hassan-Zadeh V, Lema I, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. Embo J. 2014;33(7):732–746. doi: 10.1002/embj.201387506
  • Halder K, Halder R, Chowdhury S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals. Mol Biosyst. 2009; 5(12):1703–1712. doi: 10.1039/b905132e
  • Halder R, Halder K, Sharma P, et al. Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol Biosyst. 2010;6(12):2439–2447. doi: 10.1039/c0mb00009d
  • Valton AL, Prioleau MN. G-Quadruplexes in DNA replication: a problem or a necessity? Trends Genet. 2016; 32(11):697–706. doi: 10.1016/j.tig.2016.09.004
  • Tubbs A, Sridharan S, van Wietmarschen N, et al. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell. 2018;174(5):1127–1142 e1119. doi: 10.1016/j.cell.2018.07.011
  • De Carli F, Menezes N, Berrabah W, et al. High-throughput optical mapping of replicating DNA. Small Methods. 2018;2(9):1800146. doi: 10.1002/smtd.201800146
  • Vashee S, Cvetic C, Lu W, et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 2003;17(15):1894–1908. doi: 10.1101/gad.1084203
  • Remus D, Beall EL, Botchan MR. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. Embo J. 2004;23(4):897–907. doi: 10.1038/sj.emboj.7600077
  • Hoshina S, Yura K, Teranishi H, et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem. 2013;288(42):30161–30171. doi: 10.1074/jbc.M113.492504
  • Prorok P, Artufel M, Aze A, et al. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019;10(1):3274. doi: 10.1038/s41467-019-11104-0
  • Cadoret J-C, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Nat Acad Sci. 2008;105(41):15837–15842. doi: 10.1073/pnas.0805208105
  • Harvey KJ, Newport J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol Cell Biol. 2003; 23(19):6769–6779. doi: 10.1128/Mcb.23.19.6769-6779.2003
  • Gros J, Kumar C, Lynch G, et al. Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Molecular Cell. 2015;60(5):797–807. doi: 10.1016/j.molcel.2015.10.022
  • Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature. 2018; 555(7694):112–116. doi: 10.1038/nature25507
  • Powell SK, MacAlpine HK, Prinz JA, et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. Embo J. 2015;34(4):531–543. doi: 10.15252/embj.201488307
  • Scherr MJ, Abd Wahab S, Remus D, et al. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Cell Rep. 2022;38(12):110531. doi: 10.1016/j.celrep.2022.110531
  • Albert I, Mavrich TN, Tomsho LP, et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature. 2007;446(7135):572–576. doi: 10.1038/nature05632
  • Lee W, Tillo D, Bray N, et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 2007;39(10):1235–1244. doi: 10.1038/ng2117
  • Mavrich TN, Jiang C, Ioshikhes IP, et al. Nucleosome organization in the Drosophila genome. Nature. 2008;453(7193):358–362. doi: 10.1038/nature06929
  • Yuan G-C, Liu Y-J, Dion MF, et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science. 2005;309(5734):626–630. doi: 10.1126/science.1112178
  • Field Y, Kaplan N, Fondufe-Mittendorf Y, et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol. 2008;4(11):e1000216. doi: 10.1371/journal.pcbi.1000216
  • Berbenetz NM, Nislow C, Brown GW, et al. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 2010;6(9):e1001092. doi: 10.1371/journal.pgen.1001092
  • Anderson JD, Widom J. Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol Cell Biol. 2001; 21(11):3830–3839. doi: 10.1128/MCB.21.11.3830-3839.2001
  • Barnes T, Korber P. The active mechanism of nucleosome depletion by poly(dA:dT) tracts in vivo. Int J Mol Sci. 2021;22(15):8233. doi: 10.3390/ijms22158233
  • Bernstein BE, Liu CL, Humphrey EL, et al. Global nucleosome occupancy in yeast. Genome Biol. 2004; 5(9):R62. doi: 10.1186/gb-2004-5-9-r62
  • Chacin E, Reusswig KU, Furtmeier J, et al. Establishment and function of chromatin organization at replication origins. Nature. 2023;616(7958):836–842. doi: 10.1038/s41586-023-05926-8
  • Li S, Wasserman MR, Yurieva O, et al. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat Commun. 2022;13(1):4947. doi: 10.1038/s41467-022-32657-7
  • Azmi IF, Watanabe S, Maloney MF, et al. Nucleosomes influence multiple steps during replication initiation. Elife. 2017;6:e22512. doi: 10.7554/eLife.22512
  • Liu J, Zimmer K, Rusch DB, et al. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila. Nucleic Acids Res. 2015;43(18):8746–8761. doi: 10.1093/nar/gkv766
  • Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell. 2010; 37(1):57–66. doi: 10.1016/j.molcel.2009.12.012
  • Venditti P, Costanzo G, Negri R, et al. ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain. Biochim Biophys Acta. 1994; 1219(3):677–689. doi: 10.1016/0167-4781(94)90227-5
  • Soriano I, Morafraile EC, Vázquez E, et al. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics. 2014;15(1):1–15. doi: 10.1186/1471-2164-15-791
  • Rodriguez J, Lee L, Lynch B, et al. Nucleosome occupancy as a novel chromatin parameter for replication origin functions. Genome Res. 2017;27(2):269–277. doi: 10.1101/gr.209940.116
  • Yin S, Deng W, Hu L, et al. The impact of nucleosome positioning on the organization of replication origins in eukaryotes. Biochem Biophys Res Commun. 2009;385(3):363–368. doi: 10.1016/j.bbrc.2009.05.072
  • Lombraña R, Almeida R, Revuelta I, et al. High‐resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. Embo J. 2013;32(19):2631–2644. doi: 10.1038/emboj.2013.195
  • Millan-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet. 2022;23(9):563–580. doi: 10.1038/s41576-022-00468-7
  • Unnikrishnan A, Gafken PR, Tsukiyama T. Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol. 2010; 17(4):430–437. doi: 10.1038/nsmb.1780
  • Hoggard T, Muller CA, Nieduszynski CA, et al. Sir2 mitigates an intrinsic imbalance in origin licensing efficiency between early- and late-replicating euchromatin. Proc Natl Acad Sci U S A. 2020;117(25):14314–14321. doi: 10.1073/pnas.2004664117
  • Hoggard TA, Chang F, Perry KR, et al. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet. 2018;14(5):e1007418. doi: 10.1371/journal.pgen.1007418
  • Santos-Rosa H, Millan-Zambrano G, Han N, et al. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Mol Cell. 2021;81(13):2793–2807 e2798. doi: 10.1016/j.molcel.2021.04.021
  • Brewer BJ, Fangman WL. A replication fork barrier at the 3’ end of yeast ribosomal RNA genes. Cell. 1988;55(4):637–643. doi: 10.1016/0092-8674(88)90222-x
  • Pasero P, Bensimon A, Schwob E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 2002; 16(19):2479–2484. doi: 10.1101/gad.232902
  • Foss EJ, Lao U, Dalrymple E, et al. SIR2 suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences. Proc Natl Acad Sci U S A. 2017;114(3):552–557. doi: 10.1073/pnas.1614781114
  • Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics. 1987; 116(1):9–22. doi: 10.1093/genetics/116.1.9
  • Aparicio OM, Billington BL, Gottschling DE. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991; 66(6):1279–1287. doi: 10.1016/0092-8674(91)90049-5
  • Stevenson JB, Gottschling DE. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999; 13(2):146–151. doi: 10.1101/gad.13.2.146
  • Zappulla DC, Sternglanz R, Leatherwood J. Control of replication timing by a transcriptional silencer. Curr Biol. 2002; 12(11):869–875. doi: 10.1016/s0960-9822(02)00871-0
  • Aparicio JG, Viggiani CJ, Gibson DG, et al. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(11):4769–4780. doi: 10.1128/MCB.24.11.4769-4780.2004
  • Knott SR, Viggiani CJ, Tavare S, et al. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009;23(9):1077–1090. doi: 10.1101/gad.1784309
  • Rizzardi LF, Dorn ES, Strahl BD, et al. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics. 2012;192(2):371–384. doi: 10.1534/genetics.112.142349
  • Pryde F, Jain D, Kerr A, et al. H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One. 2009;4(6):e5882. doi: 10.1371/journal.pone.0005882
  • Feng YQ, Desprat R, Fu H, et al. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLoS Genet. 2006;2(4):e65. doi: 10.1371/journal.pgen.0020065
  • Mechali M, Yoshida K, Coulombe P, et al. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev. 2013;23(2):124–131. doi: 10.1016/j.gde.2013.02.010
  • Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Biol. 2013; 5(8):a010132. doi: 10.1101/cshperspect.a010132
  • Smith OK, Aladjem MI. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol. 2014; 426(20):3330–3341. doi: 10.1016/j.jmb.2014.05.027
  • Smith OK, Kim R, Fu H, et al. Distinct epigenetic features of differentiation-regulated replication origins. Epigenet Chromatin. 2016;9:18. doi: 10.1186/s13072-016-0067-31
  • Marks AB, Fu H, Aladjem MI. Regulation of replication origins. DNA Replication. 2017;1042:43–59.
  • Tardat M, Brustel J, Kirsh O, et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol. 2010;12(11):1086–1093. doi: 10.1038/ncb2113
  • Kuo AJ, Song J, Cheung P, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature. 2012;484(7392):115–119. doi: 10.1038/nature10956
  • Long H, Zhang L, Lv M, et al. H2A.Z facilitates licensing and activation of early replication origins. Nature. 2020;577(7791):576–581. doi: 10.1038/s41586-019-1877-9
  • Kitsberg D, Selig S, Keshet I, et al. Replication structure of the human beta-globin gene domain. Nature. 1993;366(6455):588–590. doi: 10.1038/366588a0
  • Goren A, Tabib A, Hecht M, et al. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 2008;22(10):1319–1324. doi: 10.1101/gad.468308
  • Lalonde ME, Avvakumov N, Glass KC, et al. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev. 2013;27(18):2009–2024. doi: 10.1101/gad.223396.113
  • Feng Y, Vlassis A, Roques C, et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. Embo J. 2016;35(2):176–192. doi: 10.15252/embj.201591293
  • Rondinelli B, Schwerer H, Antonini E, et al. H3k4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res. 2015;43(5):2560–2574. doi: 10.1093/nar/gkv090
  • Wu R, Wang Z, Zhang H, et al. H3k9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res. 2017;45(1):169–180. doi: 10.1093/nar/gkw848
  • Fu HQ, Maunakea AK, Martin MM, et al. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet. 2013;9(6). ARTNe1003542.
  • Koren A, Handsaker RE, Kamitaki N, et al. Genetic variation in human DNA replication timing. Cell. 2014;159(5):1015–1026. doi: 10.1016/j.cell.2014.10.025
  • Ding Q, Edwards MM, Wang N, et al. The genetic architecture of DNA replication timing in human pluripotent stem cells. Nat Commun. 2021;12(1):6746. doi: 10.1038/s41467-021-27115-9
  • Das SP, Borrman T, Liu VW, et al. Replication timing is regulated by the number of MCMs loaded at origins. Genome Res. 2015;25(12):1886–1892. doi: 10.1101/gr.195305.115
  • Dukaj L, Rhind N, Copenhaver GP. The capacity of origins to load MCM establishes replication timing patterns. PLoS Genet. 2021;17(3):e1009467. doi: 10.1371/journal.pgen.1009467
  • Belsky JA, MacAlpine HK, Lubelsky Y, et al. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev. 2015;29(2):212–224. doi: 10.1101/gad.247924.114
  • Foss EJ, Sripathy S, Gatbonton-Schwager T, et al. Chromosomal Mcm2-7 distribution and the genome replication program in species from yeast to humans. PLoS Genet. 2021;17(9):e1009714. doi: 10.1371/journal.pgen.1009714
  • Cremona CA, Sarangi P, Yang Y, et al. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell. 2012;45(3):422–432. doi: 10.1016/j.molcel.2011.11.028
  • Golebiowski F, Matic I, Tatham MH, et al. System-wide changes to SUMO modifications in response to heat shock. Sci Signal. 2009;2(72):ra24. doi: 10.1126/scisignal.2000282
  • Regan-Mochrie G, Hoggard T, Bhagwat N, et al. Yeast ORC sumoylation status fine-tunes origin licensing. Genes Dev. 2022;36(13–14):807–821. doi: 10.1101/gad.349610.122
  • Santos MM, Johnson MC, Fiedler L, et al. Global early replication disrupts gene expression and chromatin conformation in a single cell cycle. Genome Biol. 2022; 23(1):217. doi: 10.1186/s13059-022-02788-7
  • Knott SR, Peace JM, Ostrow AZ, et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell. 2012;148(1–2):99–111. doi: 10.1016/j.cell.2011.12.012
  • Ostrow AZ, Nellimoottil T, Knott SR, et al. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One. 2014;9(2):e87647. doi: 10.1371/journal.pone.0087647
  • Peace JM, Villwock SK, Zeytounian JL, et al. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase. Genome Res. 2016;26(3):365–375. doi: 10.1101/gr.196857.115
  • Fang D, Lengronne A, Shi D, et al. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes Dev. 2017;31(23–24):2405–2415. doi: 10.1101/gad.306571.117
  • Zhang H, Petrie MV, He Y, et al. Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins. Elife. 2019;8. doi: 10.7554/eLife.45512
  • He Y, Petrie MV, Zhang H, et al. Rpd3 regulates single-copy origins independently of the rDNA array by opposing Fkh1-mediated origin stimulation. Proc Natl Acad Sci U S A. 2022;119(40):e2212134119. doi: 10.1073/pnas.2212134119
  • Natsume T, Muller CA, Katou Y, et al. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell. 2013;50(5):661–674. doi: 10.1016/j.molcel.2013.05.011
  • Lian HY, Robertson ED, Hiraga S, et al. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell. 2011;22(10):1753–1765. doi: 10.1091/mbc.E10-06-0549
  • Peace JM, Ter-Zakarian A, Aparicio OM, et al. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9(5):e98501. doi: 10.1371/journal.pone.0098501
  • Dave A, Cooley C, Garg M, et al. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7(1):53–61. doi: 10.1016/j.celrep.2014.02.019
  • Hiraga S, Alvino GM, Chang F, et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–383. doi: 10.1101/gad.231258.113
  • Mattarocci S, Shyian M, Lemmens L, et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 2014;7(1):62–69. doi: 10.1016/j.celrep.2014.03.010
  • Hafner L, Lezaja A, Zhang X, et al. Rif1 binding and control of chromosome-internal DNA replication origins is limited by telomere sequestration. Cell Rep. 2018;23(4):983–992. doi: 10.1016/j.celrep.2018.03.113
  • Shyian M, Mattarocci S, Albert B, et al. Budding yeast Rif1 controls genome integrity by inhibiting rDNA replication. PLoS Genet. 2016;12(11):e1006414. doi: 10.1371/journal.pgen.1006414
  • Alavi S, Ghadiri H, Dabirmanesh B, et al. G-quadruplex binding protein Rif1, a key regulator of replication timing. J Biochem. 2021;169(1):1–14. doi: 10.1093/jb/mvaa128
  • Kobayashi S, Fukatsu R, Kanoh Y, et al. Both a unique motif at the C terminus and an N-terminal HEAT repeat contribute to G-quadruplex binding and origin regulation by the Rif1 protein. Mol Cell Biol. 2019;39(4). doi: 10.1128/MCB.00364-18
  • Moriyama K, Yoshizawa-Sugata N, Masai H. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture. J Biol Chem. 2018; 293(10):3607–3624. doi: 10.1074/jbc.RA117.000446
  • Cornacchia D, Dileep V, Quivy JP, et al. Mouse Rif1 is a key regulator of the replication‐timing programme in mammalian cells. Embo J. 2012;31(18):3678–3690. doi: 10.1038/emboj.2012.214
  • Hayano M, Kanoh Y, Matsumoto S, et al. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26(2):137–150. doi: 10.1101/gad.178491.111
  • Yamazaki S, Ishii A, Kanoh Y, et al. Rif1 regulates the replication timing domains on the human genome. Embo J. 2012;31(18):3667–3677. doi: 10.1038/emboj.2012.180
  • Hiraga SI, Ly T, Garzon J, et al. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep. 2017;18(3):403–419. doi: 10.15252/embr.201641983
  • Zhang Y, Huang L, Fu H, et al. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells. Nat Commun. 2016;7(1):11748. doi: 10.1038/ncomms11748
  • Jang SM, Zhang Y, Utani K, et al. The replication initiation determinant protein (RepID) modulates replication by recruiting CUL4 to chromatin. Nat Commun. 2018;9(1):2782. doi: 10.1038/s41467-018-05177-6
  • Taddei A, Hediger F, Neumann FR, et al. The function of nuclear architecture: a genetic approach. Ann Rev Genet. 2004;38(1):305–345. doi: 10.1146/annurev.genet.37.110801.142705
  • Hiraga S, Robertson ED, Donaldson AD. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time. Embo J. 2006; 25(7):1505–1514. doi: 10.1038/sj.emboj.7601038
  • Ebrahimi H, Robertson ED, Taddei A, et al. Early initiation of a replication origin tethered at the nuclear periphery. J Cell Sci. 2010;123(Pt 7):1015–1019. doi: 10.1242/jcs.060392
  • Pasero P, Braguglia D, Gasser SM. ORC-dependent and origin-specific initiation of DNA replication at defined foci in isolated yeast nuclei. Genes Dev. 1997; 11(12):1504–1518. doi: 10.1101/gad.11.12.1504
  • Kitamura E, Blow JJ, Tanaka TU. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell. 2006; 125(7):1297–1308. doi: 10.1016/j.cell.2006.04.041
  • Duan Z, Andronescu M, Schutz K, et al. A three-dimensional model of the yeast genome. Nature. 2010;465(7296):363–367. doi: 10.1038/nature08973
  • Ostrow AZ, Kalhor R, Gan Y, et al. Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae. Proc Natl Acad Sci U S A. 2017;114(12):E2411–E2419. doi: 10.1073/pnas.1612422114
  • Natsume T, Tanaka TU. Spatial regulation and organization of DNA replication within the nucleus. Chromosome Res. 2010; 18(1):7–17. doi: 10.1007/s10577-009-9088-0
  • Nakamura H, Morita T, Sato C. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res. 1986; 165(2):291–297. doi: 10.1016/0014-4827(86)90583-5
  • Hozak P, Cook PR. Replication factories. Trends Cell Biol. 1994; 4(2):48–52. doi: 10.1016/0962-8924(94)90009-4
  • Hozak P, Hassan AB, Jackson DA, et al. Visualization of replication factories attached to a nucleoskeleton. Cell. 1993;73(2):361–373. doi: 10.1016/0092-8674(93)90235-i
  • Berezney R, Dubey DD, Huberman JA. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma. 2000; 108(8):471–484. doi: 10.1007/s004120050399
  • Xiang W, Roberti MJ, Heriche JK, et al. Correlative live and super-resolution imaging reveals the dynamic structure of replication domains. J Cell Bio. 2018;217(6):1973–1984. doi: 10.1083/jcb.201709074
  • Chagin VO, Casas-Delucchi CS, Reinhart M, et al. 4D visualization of replication foci in mammalian cells corresponding to individual replicons. Nat Commun. 2016;7(1):11231. doi: 10.1038/ncomms11231
  • Woodfine K, Fiegler H, Beare DM, et al. Replication timing of the human genome. Hum Mol Genet. 2004;13(2):191–202. doi: 10.1093/hmg/ddh016
  • Hiratani I, Ryba T, Itoh M, et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 2008;6(10):e245. doi: 10.1371/journal.pbio.0060245
  • Hansen RS, Thomas S, Sandstrom R, et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Nat Acad Sci. 2010;107(1):139–144. doi: 10.1073/pnas.0912402107
  • Mukhopadhyay R, Lajugie J, Fourel N, et al. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet. 2014;10(5):e1004319. doi: 10.1371/journal.pgen.1004319
  • Rivera-Mulia JC, Gilbert DM. Replicating large genomes: divide and conquer. Mol Cell. 2016; 62(5):756–765. doi: 10.1016/j.molcel.2016.05.007
  • Li F, Chen J, Izumi M, et al. The replication timing program of the Chinese hamster β-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J Cell Bio. 2001;154(2):283–292. doi: 10.1083/jcb.200104043
  • Zhou J, Ermakova OV, Riblet R, et al. Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells. Mol Cell Biol. 2002;22(13):4876–4889. doi: 10.1128/MCB.22.13.4876-4889.2002
  • Lieberman-Aiden E, Van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–293. doi: 10.1126/science.1181369
  • Ryba T, Hiratani I, Lu J, et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010;20(6):761–770. doi: 10.1101/gr.099655.109
  • Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–380. doi: 10.1038/nature11082
  • Pope BD, Ryba T, Dileep V, et al. Topologically associating domains are stable units of replication-timing regulation. Nature. 2014;515(7527):402–405. doi: 10.1038/nature13986
  • Narendra V, Rocha PP, An D, et al. CTCF establishes discrete functional chromatin domains at the hox clusters during differentiation. Science. 2015;347(6225):1017–1021. doi: 10.1126/science.1262088
  • Koren A, Polak P, Nemesh J, et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet. 2012;91(6):1033–1040. doi: 10.1016/j.ajhg.2012.10.018
  • Stamatoyannopoulos JA, Adzhubei I, Thurman RE, et al. Human mutation rate associated with DNA replication timing. Nature Genet. 2009;41(4):393–395. doi: 10.1038/ng.363
  • Peric-Hupkes D, Meuleman W, Pagie L, et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Molecular Cell. 2010;38(4):603–613. doi: 10.1016/j.molcel.2010.03.016
  • Solovei I, Thanisch K, Feodorova Y. How to rule the nucleus: divide et impera. Curr Opin Cell Biol. 2016;40:47–59. doi: 10.1016/j.ceb.2016.02.014
  • Sima J, Chakraborty A, Dileep V, et al. Identifying cis elements for spatiotemporal control of mammalian DNA replication. Cell. 2019;176(4):816–830 e818. doi: 10.1016/j.cell.2018.11.036
  • Gillespie PJ, Li A, Blow JJ. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem. 2001;2(1):15. doi: 10.1186/1471-2091-2-15
  • Yeeles JT, Deegan TD, Janska A, et al. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519(7544):431–435. doi: 10.1038/nature14285
  • Devbhandari S, Jiang J, Kumar C, et al. Chromatin constrains the initiation and elongation of DNA replication. Mol Cell. 2017;65(1):131–141. doi: 10.1016/j.molcel.2016.10.035
  • Kurat CF, Yeeles JTP, Patel H, et al. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell. 2017;65(1):117–130. doi: 10.1016/j.molcel.2016.11.016
  • Yeeles JTP, Janska A, Early A, et al. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell. 2017;65(1):105–116. doi: 10.1016/j.molcel.2016.11.017