1,063
Views
0
CrossRef citations to date
0
Altmetric
Review

Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart

ORCID Icon, , & ORCID Icon
Article: 2246310 | Received 20 Dec 2022, Accepted 04 Aug 2023, Published online: 22 Aug 2023

References

  • Kirillova A, Han L, Liu H, et al. Polyploid cardiomyocytes: implications for heart regeneration. Development. 2021;148(14):148. doi: 10.1242/dev.199401
  • Lin DH, Hoelz A. The structure of the nuclear pore complex (an update). Annu Rev Biochem. 2019;88(1):725–17. doi: 10.1146/annurev-biochem-062917-011901
  • Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11(7):490–501. doi: 10.1038/nrm2928
  • Aebi U, Cohn J, Buhle L, et al. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323(6088):560–564. doi: 10.1038/323560a0
  • Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14(1):13–24. doi: 10.1038/nrm3488
  • Gerace L, Blobel G. Nuclear lamina and the structural organization of the nuclear envelope. Cold Spring Harb Symp Quant Biol. 1982;46(2):967–978. doi: 10.1101/SQB.1982.046.01.090
  • Moir RD, Spann TP, Goldman RD. The dynamic properties and possible functions of nuclear lamins. Int Rev Cytol. 1995;162B:141–182.
  • Liu J, Rolef Ben-Shahar T, Riemer D, et al. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell. 2000;11(11):3937–3947. doi: 10.1091/mbc.11.11.3937
  • Cohen M, Lee KK, Wilson KL, et al. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem Sci. 2001;26(1):41–47. doi: 10.1016/S0968-0004(00)01727-8
  • Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22(7):832–853. doi: 10.1101/gad.1652708
  • Nmezi B, Xu J, Fu R, et al. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci U S A. 2019;116(10):4307–4315. doi: 10.1073/pnas.1810070116
  • Zhang X, Chen S, Yoo S, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135(6):1017–1027. doi: 10.1016/j.cell.2008.10.022
  • Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant emery-dreifuss muscular dystrophy. Nat Genet. 1999;21(3):285–288. doi: 10.1038/6799
  • Nanni S, Re A, Ripoli C, et al. The nuclear pore protein Nup153 associates with chromatin and regulates cardiac gene expression in dystrophic mdx hearts. Cardiovasc Res. 2016;112(2):555–567. doi: 10.1093/cvr/cvw204
  • Tarazon E, Rivera M, Rosello-Lleti E, et al. Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. PLoS One. 2012;7(11):e48957. doi: 10.1371/journal.pone.0048957
  • Kehat I, Accornero F, Aronow BJ, et al. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J Cell Bio. 2011;193(1):21–29. doi: 10.1083/jcb.201101046
  • Guan Y, Gao X, Tang Q, et al. Nucleoporin 107 facilitates the nuclear export of Scn5a mRNA to regulate cardiac bioelectricity. J Cell Mol Med. 2019;23(2):1448–1457. doi: 10.1111/jcmm.14051
  • Xu L, Pan L, Li J, et al. Nucleoporin 35 regulates cardiomyocyte pH homeostasis by controlling Na + -H + exchanger-1 expression. J Mol Cell Biol. 2015;7(5):476–485. doi: 10.1093/jmcb/mjv054
  • Molina-Navarro MM, Trivino JC, Martinez-Dolz L, et al. Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity. PLoS One. 2014;9(8):e104709. doi: 10.1371/journal.pone.0104709
  • Haskell GT, Jensen BC, Samsa LA, et al. Whole exome sequencing identifies truncating variants in nuclear envelope genes in patients with cardiovascular disease. Circ Cardiovasc Genet. 2017;10(3):10. doi: 10.1161/CIRCGENETICS.116.001443
  • Sinagra G, Dal Ferro M, Merlo M. Lamin A/C cardiomyopathy: cutting edge to personalized Medicine. Circ Cardiovasc Genet. 2017;10(6):10. doi: 10.1161/CIRCGENETICS.117.002004
  • Lu JT, Muchir A, Nagy PL, et al. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine. Dis Model Mech. 2011;4(5):562–568. doi: 10.1242/dmm.006346
  • Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin a and nuclear lamin C. J Biol Chem. 1993;268(22):16321–16326. doi: 10.1016/S0021-9258(19)85424-8
  • Peter M, Kitten GT, Lehner CF, et al. Cloning and sequencing of cDNA clones encoding chicken lamins a and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J Mol Biol. 1989;208(3):393–404. doi: 10.1016/0022-2836(89)90504-4
  • Lin F, Worman HJ. Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics. 1995;27(2):230–236. doi: 10.1006/geno.1995.1036
  • Kang SM, Yoon MH, Park BJ. Laminopathies mutations on single gene and various human genetic diseases. BMB Rep. 2018;51(7):327–337. doi: 10.5483/BMBRep.2018.51.7.113
  • Charron P, Arbustini E, Bonne G. What should the cardiologist know about Lamin disease? Arrhythm Electrophysiol Rev. 2012;1:22–28. doi: 10.15420/aer.2012.1.22
  • Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–1080. doi: 10.1126/science.1200708
  • Chen Y, Luttmann FF, Schoger E, et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science. 2021;373(6562):1537–1540. doi: 10.1126/science.abg5159
  • Lam NT, Sadek HA. Neonatal heart regeneration: comprehensive literature review. Circulation. 2018;138(4):412–423. doi: 10.1161/CIRCULATIONAHA.118.033648
  • Han L, Choudhury S, Mich-Basso JD, et al. Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. Dev Cell. 2020;53(1):42–59 e11. doi: 10.1016/j.devcel.2020.01.030
  • Afilalo J, Sebag IA, Chalifour LE, et al. Age-related changes in lamin A/C expression in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2007;293(3):H1451–6. doi: 10.1152/ajpheart.01194.2006
  • Han L, Mich-Basso JD, Li Y, et al. Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts. Dev Cell. 2022;57(20):2397–2411 e9. doi: 10.1016/j.devcel.2022.09.017
  • Shen W, Gong B, Xing C, et al. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell. 2022;185(26):4954–4970 e20. doi: 10.1016/j.cell.2022.11.011
  • Strash N, DeLuca S, Janer Carattini GL, et al. Human Erbb2-induced Erk activity robustly stimulates cycling and functional remodeling of rat and human cardiomyocytes. Elife. 2021;10:10. doi: 10.7554/eLife.65512
  • D’Uva G, Aharonov A, Lauriola M, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015;17(5):627–638. doi: 10.1038/ncb3149
  • Bassat E, Mutlak YE, Genzelinakh A, et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017;547(7662):179–184. doi: 10.1038/nature22978
  • Bersell K, Arab S, Haring B, et al. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–270. doi: 10.1016/j.cell.2009.04.060
  • Cipolletta E, Rusciano MR, Maione AS, et al. Targeting the CaMKII/ERK interaction in the heart prevents cardiac hypertrophy. PLoS One. 2015;10(6):e0130477. doi: 10.1371/journal.pone.0130477
  • Gallo S, Vitacolonna A, Bonzano A, et al. ERK: a key Player in the Pathophysiology of cardiac hypertrophy. Int J Mol Sci. 2019;20(9):20. doi: 10.3390/ijms20092164
  • D’Angelo MA, Gomez-Cavazos JS, Mei A, et al. A change in nuclear pore complex composition regulates cell differentiation. Dev Cell. 2012;22(2):446–458. doi: 10.1016/j.devcel.2011.11.021
  • Bodoor K, Shaikh S, Salina D, et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci. 1999;112(Pt 13):2253–2264. doi: 10.1242/jcs.112.13.2253
  • Lupu F, Alves A, Anderson K, et al. Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Dev Cell. 2008;14(6):831–842. doi: 10.1016/j.devcel.2008.03.011
  • Senger S, Csokmay J, Akbar T, et al. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis. Development. 2011;138(10):2133–2142. doi: 10.1242/dev.057372
  • Asally M, Yasuda Y, Oka M, et al. Nup358, a nucleoporin, functions as a key determinant of the nuclear pore complex structure remodeling during skeletal myogenesis. FEBS J. 2011;278(4):610–621. doi: 10.1111/j.1742-4658.2010.07982.x
  • Liang Y, Franks TM, Marchetto MC, et al. Dynamic association of NUP98 with the human genome. PLoS Genet. 2013;9(2):e1003308. doi: 10.1371/journal.pgen.1003308
  • Anderson DJ, Hetzer MW. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol. 2007;9(10):1160–1166. doi: 10.1038/ncb1636
  • Chou YY, Upadhyayula S, Houser J, et al. Inherited nuclear pore substructures template post-mitotic pore assembly. Dev Cell. 2021;56(12):1786–1803 e9. doi: 10.1016/j.devcel.2021.05.015
  • Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J Cell Sci. 2014;127:908–921. doi: 10.1242/jcs.141739
  • Knockenhauer KE, Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell. 2016;164(6):1162–1171. doi: 10.1016/j.cell.2016.01.034
  • Vollmer B, Schooley A, Sachdev R, et al. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 2012;31(20):4072–4084. doi: 10.1038/emboj.2012.256
  • Mitchell JM, Mansfeld J, Capitanio J, et al. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J Cell Bio. 2010;191(3):505–521. doi: 10.1083/jcb.201007098
  • Boehmer T, Enninga J, Dales S, et al. Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc Natl Acad Sci U S A. 2003;100(3):981–985. doi: 10.1073/pnas.252749899
  • Jacinto FV, Benner C, Hetzer MW. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev. 2015;29(12):1224–1238. doi: 10.1101/gad.260919.115
  • Jevtic P, Schibler AC, Wesley CC, et al. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep. 2019;20(6):20. doi: 10.15252/embr.201847283
  • McCloskey A, Ibarra A, Hetzer MW. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev. 2018;32(19–20):1321–1331. doi: 10.1101/gad.315523.118
  • Golchoubian B, Brunner A, Bragulat-Teixidor H, et al. Reticulon-like REEP4 at the inner nuclear membrane promotes nuclear pore complex formation. J Cell Bio. 2022;221(2):221. doi: 10.1083/jcb.202101049
  • Dialynas G, Flannery KM, Zirbel LN, et al. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet. 2012;21(7):1544–1556. doi: 10.1093/hmg/ddr592
  • Maeshima K, Yahata K, Sasaki Y, et al. Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J Cell Sci. 2006;119(21):4442–4451. doi: 10.1242/jcs.03207
  • Lenz-Bohme B, Wismar J, Fuchs S, et al. Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J Cell Bio. 1997;137(5):1001–1016. doi: 10.1083/jcb.137.5.1001
  • Belgareh N, Doye V. Dynamics of nuclear pore distribution in nucleoporin mutant yeast cells. J Cell Bio. 1997;136(4):747–759. doi: 10.1083/jcb.136.4.747
  • Bucci M, Wente SR. In vivo dynamics of nuclear pore complexes in yeast. J Cell Bio. 1997;136(6):1185–1199. doi: 10.1083/jcb.136.6.1185
  • Busch A, Kiel T, Heupel WM, et al. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin a mutants. Exp Cell Res. 2009;315(14):2373–2385. doi: 10.1016/j.yexcr.2009.05.003
  • Ferri G, Storti B, Bizzarri R. Nucleocytoplasmic transport in cells with progerin-induced defective nuclear lamina. Biophys Chem. 2017;229:77–83. doi: 10.1016/j.bpc.2017.06.003
  • Maul GG, Deaven L. Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Bio. 1977;73(3):748–760. doi: 10.1083/jcb.73.3.748
  • D’Angelo MA, Raices M, Panowski SH, et al. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009;136(2):284–295. doi: 10.1016/j.cell.2008.11.037
  • Lewin JM, Lwaleed BA, Cooper AJ, et al. The direct effect of nuclear pores on nuclear chemotherapeutic concentration in multidrug resistant bladder cancer: the nuclear sparing phenomenon. J Urol. 2007;177(4):1526–1530. doi: 10.1016/j.juro.2006.11.048
  • Kuusisto HV, Wagstaff KM, Alvisi G, et al. Global enhancement of nuclear localization-dependent nuclear transport in transformed cells. FASEB J. 2012;26(3):1181–1193. doi: 10.1096/fj.11-191585
  • Rodriguez-Bravo V, Pippa R, Song WM, et al. Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import. Cell. 2018;174(5):1200–1215 e20. doi: 10.1016/j.cell.2018.07.015
  • Sakuma S, Raices M, Borlido J, et al. Inhibition of nuclear pore complex formation Selectively induces cancer cell death. Cancer Discov. 2021;11(1):176–193. doi: 10.1158/2159-8290.CD-20-0581
  • Toyama BH, Savas JN, Park SK, et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 2013;154(5):971–982. doi: 10.1016/j.cell.2013.07.037
  • Chen F, Jimenez RJ, Sharma K, et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell. 2020;26(1):27–33 e4. doi: 10.1016/j.stem.2019.11.001
  • Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–381. doi: 10.1038/nature25975
  • Dennis CV, Suh LS, Rodriguez ML, et al. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–638. doi: 10.1111/nan.12337
  • Mathews KJ, Allen KM, Boerrigter D, et al. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell. 2017;16(5):1195–1199. doi: 10.1111/acel.12641
  • Otsuka S, Tempkin JOB, Zhang W, et al. A quantitative map of nuclear pore assembly reveals two distinct mechanisms. Nature. 2023;613(7944):575–581. doi: 10.1038/s41586-022-05528-w
  • Winey M, Yarar D, Giddings TH Jr., et al. Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell. 1997;8(11):2119–2132. doi: 10.1091/mbc.8.11.2119
  • Maul GG, Maul HM, Scogna JE, et al. Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J Cell Bio. 1972;55(2):433–447. doi: 10.1083/jcb.55.2.433
  • Buchwalter AL, Liang Y, Hetzer MW, et al. Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol Biol Cell. 2014;25(16):2472–2484. doi: 10.1091/mbc.e14-04-0865
  • Sachani SS, Landschoot LS, Zhang L, et al. Nucleoporin 107, 62 and 153 mediate Kcnq1ot1 imprinted domain regulation in extraembryonic endoderm stem cells. Nat Commun. 2018;9(1):2795. doi: 10.1038/s41467-018-05208-2
  • Brown CR, Kennedy CJ, Delmar VA, et al. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev. 2008;22(5):627–639. doi: 10.1101/gad.1632708
  • Ibarra A, Benner C, Tyagi S, et al. Nucleoporin-mediated regulation of cell identity genes. Genes Dev. 2016;30(20):2253–2258. doi: 10.1101/gad.287417.116
  • Labade AS, Salvi A, Kar S, et al. Nup93 and CTCF modulate spatiotemporal dynamics and function of the HOXA gene locus during differentiation. J Cell Sci. 2021;134(23):134. doi: 10.1242/jcs.259307
  • Zhu X, Qi C, Wang R, et al. Acute depletion of human core nucleoporin reveals direct roles in transcription control but dispensability for 3D genome organization. Cell Rep. 2022;41(5):111576. doi: 10.1016/j.celrep.2022.111576
  • Labade AS, Karmodiya K, Sengupta K. HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenet Chromatin. 2016;9(1):54. doi: 10.1186/s13072-016-0106-0
  • Light WH, Freaney J, Sood V, et al. A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol. 2013;11(3):e1001524. doi: 10.1371/journal.pbio.1001524
  • Franks TM, McCloskey A, Shokirev MN, et al. Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev. 2017;31(22):2222–2234. doi: 10.1101/gad.306753.117
  • Toda T, Hsu JY, Linker SB, et al. Nup153 Interacts with Sox2 to enable bimodal gene regulation and maintenance of neural progenitor cells. Cell Stem Cell. 2017;21(5):618–634 e7. doi: 10.1016/j.stem.2017.08.012
  • Leone L, Colussi C, Gironi K, et al. Altered Nup153 expression impairs the function of cultured hippocampal neural stem cells isolated from a mouse model of alzheimer’s disease. Mol Neurobiol. 2019;56(8):5934–5949. doi: 10.1007/s12035-018-1466-1
  • Kadota S, Ou J, Shi Y, et al. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat Commun. 2020;11(1):2606. doi: 10.1038/s41467-020-16394-3
  • Preston CC, Wyles SP, Reyes S, et al. NUP155 insufficiency recalibrates a pluripotent transcriptome with network remodeling of a cardiogenic signaling module. BMC Syst Biol. 2018;12(1):62. doi: 10.1186/s12918-018-0590-x
  • Raices M, Bukata L, Sakuma S, et al. Nuclear pores regulate muscle development and maintenance by assembling a localized Mef2C complex. Dev Cell. 2017;41(5):540–554 e7. doi: 10.1016/j.devcel.2017.05.007
  • Scholz BA, Sumida N, de Lima CDM, et al. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet. 2019;51(12):1723–1731. doi: 10.1038/s41588-019-0535-3
  • Liu Z, Yan M, Liang Y, et al. Nucleoporin Seh1 interacts with Olig2/Brd7 to promote oligodendrocyte differentiation and myelination. Neuron. 2019;102(3):587–601 e7. doi: 10.1016/j.neuron.2019.02.018
  • Boumendil C, Hari P, Olsen KCF, et al. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev. 2019;33(3–4):144–149. doi: 10.1101/gad.321117.118
  • Aksenova V, Smith A, Lee H, et al. Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat Commun. 2020;11(1):4577. doi: 10.1038/s41467-020-18266-2
  • Wang P, Zhao F, Nie X, et al. Knockdown of NUP160 inhibits cell proliferation, induces apoptosis, autophagy and cell migration, and alters the expression and localization of podocyte associated molecules in mouse podocytes. Gene. 2018;664:12–21. doi: 10.1016/j.gene.2018.04.067
  • Caputo L, Witzel HR, Kolovos P, et al. The Isl1/Ldb1 complex orchestrates genome-wide chromatin organization to instruct differentiation of multipotent cardiac progenitors. Cell Stem Cell. 2015;17(3):287–299. doi: 10.1016/j.stem.2015.08.007
  • Shah PP, Lv W, Rhoades JH, et al. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell. 2021;28(5):938–954 e9. doi: 10.1016/j.stem.2020.12.016
  • Bertero A, Fields PA, Smith AST, et al. Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. J Cell Bio. 2019;218(9):2919–2944. doi: 10.1083/jcb.201902117
  • Poleshko A, Shah PP, Gupta M, et al. Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell. 2017;171(3):573–587 e14. doi: 10.1016/j.cell.2017.09.018
  • Dultz E, Ellenberg J. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J Cell Biol. 2010;191:15-22. doi: 10.1083/jcb.201007076