1,161
Views
0
CrossRef citations to date
0
Altmetric
Review

Coilin and Cajal bodies

ORCID Icon
Article: 2256036 | Received 28 Jul 2023, Accepted 28 Aug 2023, Published online: 08 Sep 2023

References

  • Gall JG. Cajal bodies: The first 100 years. Annu Rev Cell Dev Biol. 2000;16(1):273–10. doi: 10.1146/annurev.cellbio.16.1.273
  • Cajal SR. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab Lab Invest Biol (Madrid). 1903;2:129–221.
  • Lafarga M, Tapia O, Romero AM, et al. Cajal bodies in neurons. RNA Biol. 2017;14(6):712–725. doi: 10.1080/15476286.2016.1231360
  • Andrade LE, Chan EK, Raska I, et al. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med. 1991;173(6):1407–1419. doi: 10.1084/jem.173.6.1407
  • Raska I, Andrade LE, Ochs RL, et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res. 1991;195(1):27–37. doi: 10.1016/0014-4827(91)90496-H
  • Carmo-Fonseca M, Pepperkok R, Sproat BS, et al. In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells. EMBO J. 1991;10(7):1863–1873. doi: 10.1002/j.1460-2075.1991.tb07712.x
  • Carmo-Fonseca M, Tollervey D, Pepperkok R, et al. Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J. 1991;10(1):195–206. doi: 10.1002/j.1460-2075.1991.tb07936.x
  • Carmo-Fonseca M, Pepperkok R, Carvalho MT, et al. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Bio. 1992;117(1):1–14. doi: 10.1083/jcb.117.1.1
  • Frey MR, Matera AG. Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc Natl Acad Sci U S A. 1995;92(13):5915–5919. doi: 10.1073/pnas.92.13.5915
  • Gao L, Frey MR, Matera AG. Human genes encoding U3 snRNA associate with coiled bodies in interphase cells and are clustered on chromosome 17p11.2 in a complex inverted repeat structure. Nucleic Acids Res. 1997;25(23):4740–4747. doi: 10.1093/nar/25.23.4740
  • Smith KP, Carter KC, Johnson CV, et al. U2 and U1 snRNA gene loci associate with coiled bodies. J Cell Biochem. 1995;59(4):473–485. doi: 10.1002/jcb.240590408
  • Schul W, Adelaar B, van Driel R, et al. Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns. J Cell Biochem. 1999;75(3):393–403. doi: 10.1002/(SICI)1097-4644(19991201)75:3<393:AID-JCB5>3.0.CO;2-G
  • Jacobs EY, Frey MR, Wu W, et al. Coiled bodies preferentially associate with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but not with U6 and U7 genes. Mol Biol Cell. 1999;10(5):1653–1663. doi: 10.1091/mbc.10.5.1653
  • Machyna M, Kehr S, Straube K, et al. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell. 2014;56(3):389–399. doi: 10.1016/j.molcel.2014.10.004
  • Wang Q, Sawyer IA, Sung MH, et al. Cajal bodies are linked to genome conformation. Nat Commun. 2016;7(1):10966. doi: 10.1038/ncomms10966
  • Frey MR, Bailey AD, Weiner AM, et al. Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol. 1999;9(3):126–135. doi: 10.1016/S0960-9822(99)80066-9
  • Smith KP, Lawrence JB, Gall J. Interactions of U2 gene loci and their nuclear transcripts with Cajal (coiled) bodies: evidence for PreU2 within Cajal bodies. Mol Biol Cell. 2000;11(9):2987–2998. doi: 10.1091/mbc.11.9.2987
  • Suzuki T, Izumi H, Ohno M. Cajal body surveillance of U snRNA export complex assembly. J Cell Bio. 2010;190(4):603–612. doi: 10.1083/jcb.201004109
  • Lardelli RM, Schaffer AE, Eggens VR, et al. Biallelic mutations in the 3´ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet. 2017;49(3):457–464. doi: 10.1038/ng.3762
  • Son A, Park JE, Kim VN. PARN and TOE1 constitute a 3´ end maturation module for nuclear non-coding RNAs. Cell Rep. 2018;23(3):888–898. doi: 10.1016/j.celrep.2018.03.089
  • Kiss AM, Jady BE, Darzacq X, et al. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res. 2002;30(21):4643–4649. doi: 10.1093/nar/gkf592
  • Jady BE, Darzacq X, Tucker KE, et al. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 2003;22(8):1878–1888. doi: 10.1093/emboj/cdg187
  • Duchemin A, O’Grady T, Hanache S, et al. DHX15-independent roles for TFIP11 in U6 snRNA modification, U4/U6.U5 tri-snRNP assembly and pre-mRNA splicing fidelity. Nat Commun. 2021;12(1):6648. doi: 10.1038/s41467-021-26932-2
  • Narayanan A, Speckmann W, Terns R, et al. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. MBoC. 1999;10(7):2131–2147. doi: 10.1091/mbc.10.7.2131
  • Gall JG, Bellini M, Wu Z, et al. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell. 1999;10(12):4385–4402. doi: 10.1091/mbc.10.12.4385
  • Pradet-Balade B, Girard C, Boulon S, et al. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J. 2011;30(11):2205–2218. doi: 10.1038/emboj.2011.128
  • Verheggen C, Lafontaine DL, Samarsky D, et al. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J. 2002;21(11):2736–2745. doi: 10.1093/emboj/21.11.2736
  • Boulon S, Verheggen C, Jady BE, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell. 2004;16(5):777–787. doi: 10.1016/j.molcel.2004.11.013
  • Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol. 2017;14(6):680–692. doi: 10.1080/15476286.2016.1243646
  • Carmo-Fonseca M, Ferreira J, Lamond AI. Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis--evidence that the coiled body is a kinetic nuclear structure. J Cell Bio. 1993;120(4):841–852. doi: 10.1083/jcb.120.4.841
  • Ferreira JA, Carmo-Fonseca M, Lamond AI. Differential interaction of splicing snRNPs with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei. J Cell Bio. 1994;126(1):11–23. doi: 10.1083/jcb.126.1.11
  • Haaf T, Ward DC. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res. 1996;224(1):163–173. doi: 10.1006/excr.1996.0124
  • Pena E, Berciano MT, Fernandez R, et al. Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol. 2001;430(2):250–263. doi: 10.1002/1096-9861(20010205)430:2<250:AID-CNE1029>3.0.CO;2-L
  • Tapia O, Narcis JO, Riancho J, et al. Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: role of Cajal bodies and the nucleolus. Neurobiol Dis. 2017;108:83–99. doi: 10.1016/j.nbd.2017.08.004
  • Lafarga M, Berciano MT, Garcia-Segura LM, et al. Acute osmotic/stress stimuli induce a transient decrease of transcriptional activity in the neurosecretory neurons of supraoptic nuclei. J Neurocytol. 1998;27(4):205–217. doi: 10.1023/A:1006937032068
  • Boudonck K, Dolan L, Shaw PJ. Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters. J Cell Sci. 1998;111(24):3687–3694. doi: 10.1242/jcs.111.24.3687
  • Ferreira J, Carmo-Fonseca M. The biogenesis of the coiled body during early mouse development. Development. 1995;121(2):601–612. doi: 10.1242/dev.121.2.601
  • Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus. 2010;1(1):96–108. doi: 10.4161/nucl.1.1.10680
  • Strzelecka M, Trowitzsch S, Weber G, et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol. 2010;17(4):403–409. doi: 10.1038/nsmb.1783
  • Stanek D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol. 2017;46:94–101. doi: 10.1016/j.ceb.2017.05.001
  • Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357). doi: 10.1126/science.aaf4382
  • Tucker KE, Berciano MT, Jacobs EY, et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Bio. 2001;154(2):293–308. doi: 10.1083/jcb.200104083
  • Liu JL, Wu Z, Nizami Z, et al. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell. 2009;20(6):1661–1670. doi: 10.1091/mbc.e08-05-0525
  • Chen Y, Deng Z, Jiang S, et al. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance. Nucleic Acids Res. 2015;43(1):385–395. doi: 10.1093/nar/gku1277
  • Basello DA, Matera AG, Stanek D. A point mutation in human coilin prevents Cajal body formation. J Cell Sci. 2022;135(8). doi: 10.1242/jcs.259587
  • Collier S, Pendle A, Boudonck K, et al. A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell. 2006;17(7):2942–2951. doi: 10.1091/mbc.e05-12-1157
  • Hebert MD, Matera AG, Silver PA. Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell. 2000;11(12):4159–4171. doi: 10.1091/mbc.11.12.4159
  • Courchaine E, Gelles-Watnick S, Machyna M, et al. The coilin N-terminus mediates multivalent interactions between coilin and Nopp140 to form and maintain Cajal bodies. Nat Commun. 2022;13(1):6005. doi: 10.1038/s41467-022-33434-2
  • Stanek D, Neugebauer KM. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J Cell Bio. 2004;166(7):1015–1025. doi: 10.1083/jcb.200405160
  • Sleeman J, Lyon CE, Platani M, et al. Dynamic interactions between splicing snRnps, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp Cell Res. 1998;243(2):290–304. doi: 10.1006/excr.1998.4135
  • Lyon CE, Bohmann K, Sleeman J, et al. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res. 1997;230(1):84–93. doi: 10.1006/excr.1996.3380
  • Broome HJ, Carrero ZI, Douglas HE, et al. Phosphorylation regulates coilin activity and RNA association. Biol Open. 2013;2(4):407–415. doi: 10.1242/bio.20133863
  • Hearst SM, Gilder AS, Negi SS, et al. Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci. 2009;122(11):1872–1881. doi: 10.1242/jcs.044040
  • Carrero ZI, Velma V, Douglas HE, et al. Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product. PLoS One. 2011;6(10):e25743. doi: 10.1371/journal.pone.0025743
  • Hebert MD, Poole AR. Towards an understanding of regulating Cajal body activity by protein modification. RNA Biol. 2017;14(6):761–778. doi: 10.1080/15476286.2016.1243649
  • Berchtold D, Battich N, Pelkmans L. A systems-level study reveals regulators of membrane-less organelles in human cells. Mol Cell. 2018;72(6):1035–49 e5. doi: 10.1016/j.molcel.2018.10.036
  • Jonik-Nowak B, Menneteau T, Fesquet D, et al. PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proc Natl Acad Sci U S A. 2018;115(28):E6477–E86. doi: 10.1073/pnas.1722299115
  • Cantarero L, Sanz-Garcia M, Vinograd-Byk H, et al. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep. 2015;5(1):10543. doi: 10.1038/srep10543
  • Niu H, Zhao M, Huang J, et al. UHMK1-dependent phosphorylation of Cajal body protein coilin alters 5-FU sensitivity in colon cancer cells. Cell Commun Signal. 2022;20(1):18. doi: 10.1186/s12964-022-00820-8
  • Martin-Doncel E, Rojas AM, Cantarero L, et al. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Sci Rep. 2019;9(1):13381. doi: 10.1038/s41598-019-49821-7
  • Liu J, Hebert MD, Ye Y, et al. Cell cycle-dependent localization of the CDK2-cyclin E complex in Cajal (coiled) bodies. J Cell Sci. 2000;113(Pt 9):1543–1552. doi: 10.1242/jcs.113.9.1543
  • Bellini M, Gall JG, Blackburn EA. Coilin can form a complex with the U7 small nuclear ribonucleoprotein. Mol Biol Cell. 1998;9(10):2987–3001. doi: 10.1091/mbc.9.10.2987
  • Makarov V, Rakitina D, Protopopova A, et al. Plant coilin: structural characteristics and RNA-binding properties. PLoS One. 2013;8(1):e53571. doi: 10.1371/journal.pone.0053571
  • Broome HJ, Hebert MD. Coilin displays differential affinity for specific RNAs in vivo and is linked to telomerase RNA biogenesis. J Mol Biol. 2013;425(4):713–724. doi: 10.1016/j.jmb.2012.12.014
  • Machyna M, Neugebauer KM, Stanek D. Coilin: the first 25 years. RNA Biol. 2015;12(6):590–596. doi: 10.1080/15476286.2015.1034923
  • Hebert MD, Szymczyk PW, Shpargel KB, et al. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev. 2001;15(20):2720–2729. doi: 10.1101/gad.908401
  • Shanbhag R, Kurabi A, Kwan JJ, et al. Solution structure of the carboxy-terminal Tudor domain from human Coilin. FEBS Lett. 2010;584(20):4351–4356. doi: 10.1016/j.febslet.2010.09.034
  • Courchaine EM, Barentine AES, Straube K, et al. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell. 2021;184(14):3612–3625.e17. doi: 10.1016/j.cell.2021.05.008
  • Meister G, Eggert C, Buhler D, et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol. 2001;11(24):1990–1994. doi: 10.1016/S0960-9822(01)00592-9
  • Meister G, Eggert C, Fischer U. SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol. 2002;12(10):472–478. doi: 10.1016/S0962-8924(02)02371-1
  • Xu H, Pillai RS, Azzouz TN, et al. The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma. 2005;114(3):155–166. doi: 10.1007/s00412-005-0003-y
  • Shpargel KB, Ospina JK, Tucker KE, et al. Control of Cajal body number is mediated by the coilin C-terminus. J Cell Sci. 2003;116(2):303–312. doi: 10.1242/jcs.00211
  • Sleeman JE, Ajuh P, Lamond AI. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci. 2001;114(24):4407–4419. doi: 10.1242/jcs.114.24.4407
  • Novotny I, Malinova A, Stejskalova E, et al. SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies. Cell Rep. 2015;10(3):429–440. doi: 10.1016/j.celrep.2014.12.030
  • Roithova A, Klimesova K, Panek J, et al. The Sm-core mediates the retention of partially-assembled spliceosomal snRnps in Cajal bodies until their full maturation. Nucleic Acids Res. 2018;46(7):3774–3790. doi: 10.1093/nar/gky070
  • Kaiser TE, Intine RV, Dundr M. De Novo formation of a subnuclear body. Science. 2008;322(5908):1713–1717. doi: 10.1126/science.1165216
  • Takata H, Nishijima H, Maeshima K, et al. The Integrator complex is required for integrity of Cajal bodies. J Cell Sci. 2012;125(1):166–175. doi: 10.1242/jcs.090837
  • Albrecht TR, Shevtsov SP, Wu Y, et al. Integrator subunit 4 is a ‘symplekin-like’ scaffold that associates with INTS9/11 to form the integrator cleavage module. Nucleic Acids Res. 2018;46(8):4241–4255. doi: 10.1093/nar/gky100
  • Lemm I, Girard C, Kuhn AN, et al. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell. 2006;17(7):3221–3231. doi: 10.1091/mbc.e06-03-0247
  • Moreno-Castro C, Prieto-Sanchez S, Sanchez-Hernandez N, et al. Role for the splicing factor TCERG1 in Cajal body integrity and snRNP assembly. J Cell Sci. 2019;132. doi: 10.1242/jcs.232728
  • Cihlarova Z, Kubovciak J, Sobol M, et al. BRAT1 links integrator and defective RNA processing with neurodegeneration. Nat Commun. 2022;13(1):5026. doi: 10.1038/s41467-022-32763-6
  • Girard C, Neel H, Bertrand E, et al. Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation. Nucleic Acids Res. 2006;34(10):2925–2932. doi: 10.1093/nar/gkl374
  • Mahmoudi S, Henriksson S, Weibrecht I, et al. WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol. 2010;8(11):e1000521. doi: 10.1371/journal.pbio.1000521
  • Shpargel KB, aG M. Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci U S A. 2005;102(48):17372–17377. doi: 10.1073/pnas.0508947102
  • Zhai F, Wang J, Luo X, et al. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol. 2023;149(12):10593–10608. doi: 10.1007/s00432-023-04934-5
  • Meier UT, Blobel G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Bio. 1994;127(6):1505–1514. doi: 10.1083/jcb.127.6.1505
  • Yang Y, Isaac C, Wang C, et al. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol Biol Cell. 2000;11(2):567–577. doi: 10.1091/mbc.11.2.567
  • Wang C, Query CC, Meier UT. Immunopurified small nucleolar ribonucleoprotein particles pseudouridylate rRNA independently of their association with phosphorylated Nopp140. Mol Cell Biol. 2002;22(24):8457–8466. doi: 10.1128/MCB.22.24.8457-8466.2002
  • Isaac C, Yang Y, Meier UT. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Bio. 1998;142(2):319–329. doi: 10.1083/jcb.142.2.319
  • Bizarro J, Deryusheva S, Wacheul L, et al. Nopp140-chaperoned 2´-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. Genes Dev. 2021;35(15–16):1123–1141. doi: 10.1101/gad.348660.121
  • Riback JA, Zhu L, Ferrolino MC, et al. Composition-dependent thermodynamics of intracellular phase separation. Nature. 2020;581(7807):209–214. doi: 10.1038/s41586-020-2256-2
  • Klingauf M, Stanek D, Neugebauer KM, et al. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell. 2006;17(12):4972–4981. doi: 10.1091/mbc.e06-06-0513
  • Stanek D, Pridalova-Hnilicova J, Novotny I, et al. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol Biol Cell. 2008;19(6):2534–2543. doi: 10.1091/mbc.e07-12-1259
  • Novotny I, Blazikova M, Stanek D, et al. In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies. Mol Biol Cell. 2011;22(4):513–523. doi: 10.1091/mbc.e10-07-0560
  • Schaffert N, Hossbach M, Heintzmann R, et al. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRnps in Cajal bodies. EMBO J. 2004;23(15):3000–3009. doi: 10.1038/sj.emboj.7600296
  • Walker MP, Tian L, Matera AG, et al. Reduced viability, fertility and fecundity in mice lacking the Cajal body marker protein, coilin. PLoS One. 2009;4(7):e6171. doi: 10.1371/journal.pone.0006171
  • Abulfaraj AA, Alhoraibi HM, Mariappan K, et al. Analysis of the Arabidopsis coilin mutant reveals a positive role of AtCOILIN in plant immunity. Plant Physiol. 2022;190(1):745–761. doi: 10.1093/plphys/kiac280
  • Deryusheva S, Gall JG, Matera AG. Small Cajal body–specific RNAs of Drosophila function in the absence of Cajal bodies. Mol Biol Cell. 2009;20(24):5250–5259. doi: 10.1091/mbc.e09-09-0777
  • Bizarro J, Dodre M, Huttin A, et al. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res. 2015;43(18):8973–8989. doi: 10.1093/nar/gkv809
  • Nesic D, Tanackovic G, Kramer A. A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J Cell Sci. 2004;117(19):4423–4433. doi: 10.1242/jcs.01308
  • Tanackovic G, Kramer A. Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol Biol Cell. 2005;16(3):1366–1377. doi: 10.1091/mbc.e04-11-1034
  • Malinova A, Cvackova Z, Mateju D, et al. Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Bio. 2017;216(6):1579–1596. doi: 10.1083/jcb.201701165
  • Klimesova K, Vojackova J, Radivojevic N, et al. TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nat Commun. 2021;12(1):3646. doi: 10.1038/s41467-021-23934-y
  • Klimesova K, Petrzilkova H, Barinka C, et al. SART3 associates with a post-splicing complex. J Cell Sci. 2023;136(2). doi: 10.1242/jcs.260380
  • Zhu Y, Tomlinson RL, Lukowiak AA, et al. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol Biol Cell. 2004;15(1):81–90. doi: 10.1091/mbc.e03-07-0525
  • Jady BE, Bertrand E, Kiss T. Human telomerase RNA and box H/ACA scaRnas share a common Cajal body–specific localization signal. J Cell Bio. 2004;164(5):647–652. doi: 10.1083/jcb.200310138
  • Venteicher AS, Abreu EB, Meng Z, et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science. 2009;323(5914):644–648. doi: 10.1126/science.1165357
  • Cristofari G, Adolf E, Reichenbach P, et al. Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol Cell. 2007;27(6):882–889. doi: 10.1016/j.molcel.2007.07.020
  • Zhong F, Savage SA, Shkreli M, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 2011;25(1):11–16. doi: 10.1101/gad.2006411
  • Stern JL, Zyner KG, Pickett HA, et al. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol Cell Biol. 2012;32(13):2384–2395. doi: 10.1128/MCB.00379-12
  • Tomlinson RL, Li J, Culp BR, et al. A Cajal body-independent pathway for telomerase trafficking in mice. Exp Cell Res. 2010;316(17):2797–2809. doi: 10.1016/j.yexcr.2010.07.001
  • Vogan JM, Zhang X, Youmans DT, et al. Minimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies. Elife. 2016;5. doi: 10.7554/eLife.18221
  • Buemi V, Schillaci O, Santorsola M, et al. TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance. Nat Commun. 2022;13(1):2302. doi: 10.1038/s41467-022-29907-z
  • Chen L, Roake CM, Galati A, et al. Loss of human TGS1 hypermethylase promotes increased telomerase RNA and telomere elongation. Cell Rep. 2020;30(5):1358–72 e5. doi: 10.1016/j.celrep.2020.01.004
  • Kim NK, Theimer CA, Mitchell JR, et al. Effect of pseudouridylation on the structure and activity of the catalytically essential P6.1 hairpin in human telomerase RNA. Nucleic Acids Res. 2010;38(19):6746–6756. doi: 10.1093/nar/gkq525
  • Rudzka M, Wroblewska-Ankiewicz P, Majewska K, et al. Functional nuclear retention of pre-mRNA involving Cajal bodies during meiotic prophase in European larch (Larix decidua). Plant Cell. 2022;34(6):2404–2423. doi: 10.1093/plcell/koac091
  • Shaw J, Love AJ, Makarova SS, et al. Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa. Nucleus. 2014;5(1):85–94. doi: 10.4161/nucl.28315
  • Love AJ, Yu C, Petukhova NV, et al. Cajal bodies and their role in plant stress and disease responses. RNA Biol. 2017;14(6):779–790. doi: 10.1080/15476286.2016.1243650
  • Kotova E, Jarnik M, Tulin AV, et al. Poly (ADP-ribose) polymerase 1 is required for protein localization to Cajal body. PLoS Genet. 2009;5(2):e1000387. doi: 10.1371/journal.pgen.1000387
  • Spechenkova N, Samarskaya VO, Kalinina NO, et al. Plant Poly(ADP-Ribose) polymerase 1 is a potential mediator of cross-talk between the Cajal body protein coilin and salicylic acid-mediated antiviral defence. Viruses. 2023;15(6):15. doi: 10.3390/v15061282
  • Shaw J, Yu C, Makhotenko AV, et al. Interaction of a plant virus protein with the signature Cajal body protein coilin facilitates salicylic acid-mediated plant defence responses. New Phytol. 2019;224(1):439–453. doi: 10.1111/nph.15994
  • Petrovska B, Sebela M, Dolezel J. Inside a plant nucleus: discovering the proteins. J Exp Bot. 2015;66(6):1627–1640. doi: 10.1093/jxb/erv041