1,473
Views
0
CrossRef citations to date
0
Altmetric
Review

Prelamin A and ZMPSTE24 in premature and physiological aging

ORCID Icon & ORCID Icon
Article: 2270345 | Received 29 Aug 2023, Accepted 06 Oct 2023, Published online: 26 Oct 2023

References

  • Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364–14. doi: 10.1016/S0140-6736(18)32112-3
  • Corrado A, Cici D, Rotondo C, et al. Molecular basis of bone aging. Int J Mol Sci. 2020;21(10):3679. doi: 10.3390/ijms21103679
  • North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–1108. doi: 10.1161/CIRCRESAHA.111.246876
  • Yazdanyar A, Newman AB. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med. 2009;25(4):563–577. doi: 10.1016/j.cger.2009.07.007
  • Dreesen O, Stewart CL. Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany NY). 2011;3(9):889–895. doi: 10.18632/aging.100383
  • Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev. 2017;33:18–29. doi: 10.1016/j.arr.2016.06.007
  • Hamczyk MR, Del Campo L, Andres V. Aging in the cardiovascular system: lessons from Hutchinson-Gilford progeria syndrome. Annu Rev Physiol. 2018;80(1):27–48. doi: 10.1146/annurev-physiol-021317-121454
  • Gordon LB, Rothman FG, López-Otín C, et al. Progeria: a paradigm for translational medicine. Cell. 2014;156(3):400–407. doi: 10.1016/j.cell.2013.12.028
  • Michaelis S, Hrycyna CA. Biochemistry. A protease for the ages. Science. 2013;339(6127):1529–1530. doi: 10.1126/science.1236764.
  • Reiss Y, Goldstein JL, Seabra MC, et al. Inhibition of purified p21ras farnesyl: protein transferase by cys-AAX tetrapeptides. Cell. 1990;62(1):81–88. doi: 10.1016/0092-8674(90)90242-7
  • Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016;17(2):110–122. doi: 10.1038/nrm.2015.11
  • Nie L, Spear E, Babatz TD, et al. A new paradigm for prelamin a proteolytic processing by ZMPSTE24: the upstream SY^ LL cleavage occurs first and there is no CaaX processing by ZMPSTE24 bioRxiv; 2020. doi: 10.1101/2020.05.13.093849.
  • Clarke S, Vogel JP, Deschenes RJ, et al. Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci U S A. 1988;85(13):4643–4647. doi: 10.1073/pnas.85.13.4643
  • Dai Q, Choy E, Chiu V, et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J Biol Chem. 1998;273(24):15030–15034. doi: 10.1074/jbc.273.24.15030
  • Bergo MO, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin a processing defect. Proc Natl Acad Sci U S A. 2002;99(20):13049–13054. doi: 10.1073/pnas.192460799
  • Pendás AM, Zhou Z, Cadiñanos J, et al. Defective prelamin a processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet. 2002;31(1):94–99. doi: 10.1038/ng871
  • Pryor EE Jr, Horanyi PS, Clark KM, et al. Structure of the integral membrane protein CAAX protease Ste24p. Science. 2013;339(6127):1600–1604. doi: 10.1126/science.1232048
  • Quigley A, Dong YY, Pike AC, et al. The structural basis of ZMPSTE24-dependent laminopathies. Science. 2013;339(6127):1604–1607. doi: 10.1126/science.1231513
  • Young SG, Fong LG, Michaelis S, et al. Zmpste24, misshapen cell nuclei, and progeria–new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res. 2005;46(12):2531–2558. doi: 10.1194/jlr.R500011-JLR200
  • Worman HJ, Michaelis S. Permanently farnesylated prelamin A, progeria, and atherosclerosis. Circulation. 2018;138(3):283–286. doi: 10.1161/CIRCULATIONAHA.118.034480
  • Barrowman J, Hamblet C, George CM, et al. Analysis of prelamin a biogenesis reveals the nucleus to be a CaaX processing compartment. Mol Biol Cell. 2008;19(12):5398–5408. doi: 10.1091/mbc.e08-07-0704
  • Wu D, Flannery AR, Cai H, et al. Nuclear localization signal deletion mutants of lamin a and progerin reveal insights into lamin a processing and emerin targeting. Nucleus. 2014;5(1):66–74. doi: 10.4161/nucl.28068
  • Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin a cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–298. doi: 10.1038/nature01629
  • Sandre-Giovannoli A D, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003;300(5628):2055. doi: 10.1126/science.1084125
  • DeBusk FL. The Hutchinson-Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr. 1972;80(4):697–724. doi: 10.1016/S0022-3476(72)80229-4
  • Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358(6):592–604. doi: 10.1056/NEJMoa0706898
  • Agarwal AK, Fryns JP, Auchus RJ, et al. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12(16):1995–2001. doi: 10.1093/hmg/ddg213
  • Moulson CL, Go G, Gardner JM, et al. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol. 2005;125(5):913–919. doi: 10.1111/j.0022-202X.2005.23846.x
  • Shackleton S, Smallwood DT, Clayton P, et al. Compound heterozygous ZMPSTE24 mutations reduce prelamin a processing and result in a severe progeroid phenotype. J Med Genet. 2005;42(6):e36. doi: 10.1136/jmg.2004.029751
  • Navarro CL, Esteves-Vieira V, Courrier S, et al. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. Eur J Hum Genet. 2014;22(8):1002–1011. doi: 10.1038/ejhg.2013.258
  • Barrowman J, Wiley PA, Hudon-Miller SE, et al. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum Mol Genet. 2012;21(18):4084–4093. doi: 10.1093/hmg/dds233
  • Spear ED, Hsu ET, Nie L, et al. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin a cleavage activity and/or protein stability. Dis Model Mech. 2018;11(7):dmm033670. doi: 10.1242/dmm.033670
  • Wang Y, Lichter-Konecki U, Anyane-Yeboa K, et al. A mutation abolishing the ZMPSTE24 cleavage site in prelamin a causes a progeroid disorder. J Cell Sci. 2016;129(10):1975–1980. doi: 10.1242/jcs.187302
  • Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol. 1999;147(5):913–920. doi: 10.1083/jcb.147.5.913
  • Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21(3):285–288. doi: 10.1038/6799
  • Fong LG, Ng JK, Meta M, et al. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci U S A. 2004;101(52):18111–18116. doi: 10.1073/pnas.0408558102
  • Varela I, Cadiñanos J, Pendás AM, et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature. 2005;437(7058):564–568. doi: 10.1038/nature04019
  • Yang SH, Bergo MO, Toth JI, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A. 2005;102(29):10291–10296. doi: 10.1073/pnas.0504641102
  • Toth JI, Yang SH, Qiao X, et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A. 2005;102(36):12873–12878. doi: 10.1073/pnas.0505767102
  • Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2005;102(36):12879–12884. doi: 10.1073/pnas.0506001102
  • Mallampalli MP, Huyer G, Bendale P, et al. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2005;102(40):14416–14421. doi: 10.1073/pnas.0503712102
  • Glynn MW, Glover TW. Incomplete processing of mutant lamin a in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet. 2005;14(20):2959–2969. doi: 10.1093/hmg/ddi326
  • Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 2006;311(5767):1621–1623. doi: 10.1126/science.1124875
  • Yang SH, Meta M, Qiao X, et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest. 2006;116(8):2115–2121. doi: 10.1172/JCI28968
  • Capell BC, Olive M, Erdos MR, et al. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci U S A. 2008;105(41):15902–15907. doi: 10.1073/pnas.0807840105
  • Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666–16671. doi: 10.1073/pnas.1202529109
  • Gordon LB, Kleinman ME, Massaro J, et al. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation. 2016;134(2):114–125. doi: 10.1161/CIRCULATIONAHA.116.022188
  • Suzuki M, Jeng LJB, Chefo S, et al. FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Genet Med. 2023;25(2):100335. doi: 10.1016/j.gim.2022.11.003
  • Ibrahim MX, VI S, MK A, et al. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science. 2013;340(6138):1330–1333. doi: 10.1126/science.1238880
  • Chen X, Yao H, Kashif M, et al. A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells. Elife. 2021;10:e63284. doi: 10.7554/eLife.63284
  • Turgay Y, Eibauer M, Goldman AE, et al. The molecular architecture of lamins in somatic cells. Nature. 2017;543(7644):261–264. doi: 10.1038/nature21382
  • Turgay Y, Medalia O. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus. 2017;8(5):475–481. doi: 10.1080/19491034.2017.1337622
  • Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84(1):131–164. doi: 10.1146/annurev-biochem-060614-034115
  • Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172(1):41–53. doi: 10.1083/jcb.200509124
  • Sosa BA, Rothballer A, Kutay U, et al. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell. 2012;149(5):1035–1047. doi: 10.1016/j.cell.2012.03.046
  • Rothballer A, Schwartz TU, Kutay U. Lincing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus. 2013;4(1):29–36. doi: 10.4161/nucl.23387
  • Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol. 2015;208(1):11–22. doi: 10.1083/jcb.201409047
  • Gundersen GG, Worman HJ. Nuclear positioning. Cell. 2013;152(6):1376–1389. doi: 10.1016/j.cell.2013.02.031
  • Maurer M, Lammerding J. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu Rev Biomed Eng. 2019;21(1):443–468. doi: 10.1146/annurev-bioeng-060418-052139
  • Wong X, Loo TH, Stewart CL. LINC complex regulation of genome organization and function. Curr Opin Genet Dev. 2021;67:130–141. doi: 10.1016/j.gde.2020.12.007
  • Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. doi: 10.1126/science.1240104
  • Chang W, Wang Y, Luxton GWG, et al. Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. Proc Natl Acad Sci U S A. 2019;116(9):3578–3583. doi: 10.1073/pnas.1809683116
  • Dreesen O. Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson-Gilford progeria (HGPS). Biochem Soc Trans. 2020;48(3):981–991. doi: 10.1042/BST20190882
  • Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312(5776):1059–1063. doi: 10.1126/science.1127168
  • Liu Y, Rusinol A, Sinensky M, et al. DNA damage responses in progeroid syndromes arise from defective maturation of prelamin a. J Cell Sci. 2006;119(Pt 22):4644–4649. doi: 10.1242/jcs.03263
  • Kreienkamp R, Graziano S, Coll-Bonfill N, et al. A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Rep. 2018;22(8):2006–2015. doi: 10.1016/j.celrep.2018.01.090
  • Gonzalo S, Kreienkamp R. DNA repair defects and genome instability in Hutchinson-Gilford progeria syndrome. Curr Opin Cell Biol. 2015;34:75–83. doi: 10.1016/j.ceb.2015.05.007
  • Lammerding J, Fong LG, Ji JY, et al. Lamins a and C but not lamin B1 regulate nuclear mechanics. J Biol Chem. 2006;281(35):25768–25780. doi: 10.1074/jbc.M513511200
  • Verstraeten VL, Ji JY, Cummings KS, et al. Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell. 2008;7(3):383–393. doi: 10.1111/j.1474-9726.2008.00382.x
  • Kubben N, Zhang W, Wang L, et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell. 2016;165(6):1361–1374. doi: 10.1016/j.cell.2016.05.017
  • Dahl KN, Scaffidi P, Islam MF, et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2006;103(27):10271–10276. doi: 10.1073/pnas.0601058103
  • Xiong ZM, Choi JY, Wang K, et al. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell. 2016;15(2):279–290. doi: 10.1111/acel.12434
  • Cao K, Blair CD, Faddah DA, et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest. 2011;121(7):2833–2844. doi: 10.1172/JCI43578
  • Hamczyk MR, Villa-Bellosta R, Quesada V, et al. Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells. EMBO Mol Med. 2019;11(4):e9736. doi: 10.15252/emmm.201809736
  • Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin a causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004;101(24):8963–8968. doi: 10.1073/pnas.0402943101
  • Benson EK, Lee SW, Aaronson SA. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci. 2010;123(Pt 15):2605–2612. doi: 10.1242/jcs.067306
  • Espada J, Varela I, Flores I, et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol. 2008;181(1):27–35. doi: 10.1083/jcb.200801096
  • Liu B, Wang J, Chan KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med. 2005;11(7):780–785. doi: 10.1038/nm1266
  • Primmer SR, Liao CY, Kummert OMP, et al. Lamin a to Z in normal aging. Aging (Albany NY). 2022;14(20):8150–8166. doi: 10.18632/aging.204342
  • López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039
  • López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001
  • Varga R, Eriksson M, Erdos MR, et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2006;103(9):3250–3245. doi: 10.1073/pnas.0600012103
  • Osorio FG, Navarro CL, Cadiñanos J, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med. 2011;3(106):106ra107. doi: 10.1126/scitranslmed.3002847
  • Villa-Bellosta R, Rivera-Torres J, Osorio FG, et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation. 2013;127(24):2442–2451. doi: 10.1161/CIRCULATIONAHA.112.000571
  • Lee JM, Nobumori C, Tu Y, et al. Modulation of LMNA splicing as a strategy to treat prelamin a diseases. J Clin Invest. 2016;126(4):1592–1602. doi: 10.1172/JCI85908
  • Kim PH, Luu J, Heizer P, et al. Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Sci Transl Med. 2018;10(460):eaat7163. doi: 10.1126/scitranslmed.aat7163
  • Cabral WA, Tavarez UL, Beeram I, et al. Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson-Gilford progeria syndrome. Aging Cell. 2021;20(9):e13457. doi: 10.1111/acel.13457
  • Hamczyk MR, Villa-Bellosta R, Gonzalo P, et al. Vascular smooth muscle-specific progerin expression accelerates atherosclerosis and death in a mouse model of Hutchinson-Gilford progeria syndrome. Circulation. 2018;138(3):266–282. doi: 10.1161/CIRCULATIONAHA.117.030856
  • Benedicto I, Dorado B, Andrés V. Molecular and cellular mechanisms driving cardiovascular disease in Hutchinson-Gilford progeria syndrome: lessons learned from animal models. Cells. 2021;10(5):1157. doi: 10.3390/cells10051157
  • Danielsson BE, Peters HC, Bathula K, et al. Progerin-expressing endothelial cells are unable to adapt to shear stress. Biophys J. 2022;121(4):620–628. doi: 10.1016/j.bpj.2022.01.004
  • Gete YG, Koblan LW, Mao X, et al. Mechanisms of angiogenic incompetence in Hutchinson-Gilford progeria via downregulation of endothelial NOS. Aging Cell. 2021;20(7):e13388. doi: 10.1111/acel.13388
  • Osmanagic-Myers S, Kiss A, Manakanatas C, et al. Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. J Clin Invest. 2019;129(2):531–545. doi: 10.1172/JCI121297
  • Ast T, Michaelis S, Schuldiner M. The protease Ste24 clears clogged translocons. Cell. 2016;164(1–2):103–114. doi: 10.1016/j.cell.2015.11.053
  • Kayatekin C, Amasino A, Gaglia G, et al. Translocon declogger Ste24 protects against IAPP oligomer-induced proteotoxicity. Cell. 2018;173(1):62–73. doi: 10.1016/j.cell.2018.02.026
  • Fu B, Wang L, Li S, et al. ZMPSTE24 defends against influenza and other pathogenic viruses. J Exp Med. 2017;214(4):919–929. doi: 10.1084/jem.20161270
  • Fujimura-Kamada K, Nouvet FJ, Michaelis S, et al. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J Cell Biol. 1997;136(2):271–285. doi: 10.1083/jcb.136.2.271
  • Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science. 1997;275(5307):1796–1800. doi: 10.1126/science.275.5307.1796
  • Tam A, Nouvet FJ, Fujimura-Kamada K, et al. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol. 1998;142(3):635–649. doi: 10.1083/jcb.142.3.635
  • Jonikas MC, Collins SR, Denic V, et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science. 2009;323(5922):1693–1697. doi: 10.1126/science.1167983
  • Hosomi A, Iida K, Cho T, et al. The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem. 2020;295(30):10406–10419. doi: 10.1074/jbc.RA120.012575
  • Tipper DJ, Harley CA, Kaiser C. Yeast genes controlling responses to topogenic signals in a model transmembrane protein. Mol Biol Cell. 2002 Apr;13(4):1158–1174. doi: 10.1091/mbc.01-10-0488
  • Runnebohm AM, Richards KA, Irelan CB, et al. Overlapping function of Hrd1 and Ste24 in translocon quality control provides robust channel surveillance. J Biol Chem. 2020;295(47):16113–16120. doi: 10.1074/jbc.AC120.016191
  • Wang Y, Shilagardi K, Hsu T, et al. Abolishing the prelamin a ZMPSTE24 cleavage site leads to progeroid phenotypes with near-normal longevity in mice. Proc Natl Acad Sci U S A. 2022;119(9):e2118695119. doi: 10.1073/pnas.2118695119
  • Stewart CL, Kozlov S, Fong LG, et al. Mouse models of the laminopathies. Exp Cell Res. 2007;313(10):2144–2156. doi: 10.1016/j.yexcr.2007.03.026
  • Zhang H, Kieckhaefer JE, Cao K. Mouse models of laminopathies. Aging Cell. 2013;12(1):2–10. doi: 10.1111/acel.12021
  • Zaghini A, Sarli G, Barboni C, et al. Long term breeding of the Lmna G609G progeric mouse: characterization of homozygous and heterozygous models. Exp Gerontol. 2020;130:110784. doi: 10.1016/j.exger.2019.110784
  • Nevado RM, Hamczyk MR, Gonzalo P, et al. Premature vascular aging with features of plaque vulnerability in an atheroprone mouse model of Hutchinson-Gilford progeria syndrome with ldlr deficiency. Cells. 2020;9(10):2252. doi: 10.3390/cells9102252
  • McClintock D, Ratner D, Lokuge M, et al. The mutant form of lamin a that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One. 2007;2(12):e1269. doi: 10.1371/journal.pone.0001269
  • Olive M, Harten I, Mitchell R, et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010;30(11):2301–2309. doi: 10.1161/ATVBAHA.110.209460
  • Ragnauth CD, Warren DT, Liu Y, et al. Prelamin a acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation. 2010;121(20):2200–2210. doi: 10.1161/CIRCULATIONAHA.109.902056
  • Lattanzi G, Ortolani M, Columbaro M, et al. Lamins are rapamycin targets that impact human longevity: a study in centenarians. J Cell Sci. 2014;127(Pt 1):147–157. doi: 10.1242/jcs.133983
  • Caron M, Auclair M, Sterlingot H, et al. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS. 2003;17(17):2437–2344. doi: 10.1097/00002030-200311210-00005
  • Coffinier C, Hudon SE, Farber EA, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin a in cells. Proc Natl Acad Sci U S A. 2007;104(33):13432–13437. doi: 10.1073/pnas.0704212104
  • Coffinier C, Hudon SE, Lee R, et al. A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin a in cells. J Biol Chem. 2008;283(15):9797–9804. doi: 10.1074/jbc.M709629200
  • Hudon SE, Coffinier C, Michaelis S, et al. HIV-protease inhibitors block the enzymatic activity of purified Ste24p. Biochem Biophys Res Commun. 2008;374(2):365–368. doi: 10.1016/j.bbrc.2008.07.033
  • Clarke SG. HIV protease inhibitors and nuclear lamin processing: getting the right bells and whistles. Proc Natl Acad Sci U S A. 2007;104(35):13857–1388. doi: 10.1073/pnas.0706529104
  • Clark KM, Jenkins JL, Fedoriw N, et al. Human CaaX protease ZMPSTE24 expressed in yeast: structure and inhibition by HIV protease inhibitors. Protein Sci. 2017;26(2):242–257. doi: 10.1002/pro.3074
  • Reyskens KM, Essop MF. HIV protease inhibitors and onset of cardiovascular diseases: a central role for oxidative stress and dysregulation of the ubiquitin-proteasome system. Biochim Biophys Acta. 2014;1842(2):256–268. doi: 10.1016/j.bbadis.2013.11.019
  • Moran CA, Weitzmann MN, Ofotokun I. The protease inhibitors and HIV-associated bone loss. Curr Opin HIV AIDS. 2016;11(3):333–342. doi: 10.1097/COH.0000000000000260
  • Friis-Møller N, Reiss P, DAD Study Group. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723–1735.