960
Views
0
CrossRef citations to date
0
Altmetric
Review

Beyond ribosome biogenesis: noncoding nucleolar RNAs in physiology and tumor biology

, , & ORCID Icon
Article: 2274655 | Received 31 Jul 2023, Accepted 19 Oct 2023, Published online: 31 Oct 2023

References

  • Milo R, Jorgensen P, Moran U, et al. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 2010;38(suppl_1):D750–15. doi: 10.1093/nar/gkp889
  • Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi: 10.1126/science.abj6987
  • Frank L, Rippe K. Repetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separation. J Mol Biol. 2020;432(15):4270–4286. doi: 10.1016/j.jmb.2020.04.015
  • Kim JH, Dilthey AT, Nagaraja R, et al. Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res. 2018;46(13):6712–6725. doi: 10.1093/nar/gky442
  • Floutsakou I, Agrawal S, Nguyen TT, et al. The shared genomic architecture of human nucleolar organizer regions. Genome Res. 2013;23(12):2003–2012. doi: 10.1101/gr.157941.113
  • McStay B. The p-arms of human acrocentric chromosomes play by a different set of rules. Annu Rev Genomics Hum Genet. 2023;24(1):63–83. doi: 10.1146/annurev-genom-101122-081642
  • Nemeth A, Conesa A, Santoyo-Lopez J, et al. Initial genomics of the human nucleolus. PLoS Genet. 2010;6(3):e1000889. doi: 10.1371/journal.pgen.1000889
  • Nemeth A, Langst G. Genome organization in and around the nucleolus. Trends Genet. 2011;27(4):149–156. doi: 10.1016/j.tig.2011.01.002
  • Hurt E, Cheng J, Baβler J, et al. SnapShot: Eukaryotic ribosome biogenesis I. Cell. 2023;186(10):2282–2282.e1. doi: 10.1016/j.cell.2023.04.030
  • Hori Y, Engel C, Kobayashi T. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol. 2023;24(6):414–429. doi: 10.1038/s41580-022-00573-9
  • Maiser A, Dillinger S, Längst G, et al. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci Rep. 2020;10(1):7462. doi: 10.1038/s41598-020-64589-x
  • Yao RW, Xu G, Wang Y, et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol Cell. 2019;76(5):767–783 e11. doi: 10.1016/j.molcel.2019.08.014
  • Lafontaine DLJ, Riback JA, Bascetin R, et al. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22(3):165–182. doi: 10.1038/s41580-020-0272-6
  • Marko JF. The liquid drop nature of nucleoli. Nucleus. 2012;3(2):115–117. doi: 10.4161/nucl.19099
  • Nemeth A, Grummt I. Dynamic regulation of nucleolar architecture. Curr Opin Cell Biol. 2018;52:105–111. doi:10.1016/j.ceb.2018.02.013
  • Feng S, Manley JL. Beyond rRNA: nucleolar transcription generates a complex network of RNAs with multiple roles in maintaining cellular homeostasis. Genes Dev. 2022;36(15–16):876–886. doi: 10.1101/gad.349969.122
  • McCool MA, Bryant CJ, Baserga SJ. MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc Trans. 2020;48(2):595–612. doi: 10.1042/BST20190854
  • Politz JC, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA. 2009;15(9):1705–1715. doi: 10.1261/rna.1470409
  • Castoldi M, Schmidt S, Benes V, et al. M.U. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc. 2008;3(2):321–329. doi: 10.1038/nprot.2008.4
  • Reyes-Gutierrez P, Ritland Politz JC, Pederson T. A mRNA and cognate microRNAs localize in the nucleolus. Nucleus. 2014;5(6):636–642. doi: 10.4161/19491034.2014.990864
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–108. doi: 10.1038/nature11233
  • Tilgner H, Knowles DG, Johnson R, et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRnas. Genome Res. 2012;22(9):1616–1625. doi: 10.1101/gr.134445.111
  • Mas-Ponte D, Carlevaro-Fita J, Palumbo E, et al. LncATLAS database for subcellular localization of long noncoding RNAs. RNA. 2017;23(7):1080–1087. doi: 10.1261/rna.060814.117
  • Bai B, Liu H, Laiho M. Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRnas. FEBS Open Bio. 2014;4(1):441–449. doi: 10.1016/j.fob.2014.04.010
  • Bai B, Yegnasubramanian S, Wheelan SJ, et al. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs. PLoS One. 2014;9(9):e107519. doi: 10.1371/journal.pone.0107519
  • Li ZF, Liang YM, Lau PN, et al. Dynamic localisation of mature microRnas in human nucleoli is influenced by exogenous genetic materials. PLoS One. 2013;8(8):e70869. doi: 10.1371/journal.pone.0070869
  • Caudron-Herger M, Pankert T, Seiler J, et al. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 2015;34(22):2758–2774. doi: 10.15252/embj.201591458
  • Li D, Zhang J, Wang M, et al. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat Commun. 2018;9(1):1726. doi: 10.1038/s41467-018-04072-4
  • Li D, Cao R, Li Q, et al. Nucleolus assembly impairment leads to two-cell transcriptional repression via NPM1-mediated PRC2 recruitment. Nat Struct Mol Biol. 2023;30(7):914–925. doi: 10.1038/s41594-023-01003-w
  • Quinodoz SA, Jachowicz, JW, Bhat, P, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23):5775–5790 e30. doi: 10.1016/j.cell.2021.10.014
  • Yap K, Chung TH, Makeyev EV. Hybridization-proximity labeling reveals spatially ordered interactions of nuclear RNA compartments. Mol Cell. 2022;82(2):463–478 e11. doi: 10.1016/j.molcel.2021.10.009
  • Politz JC, Yarovoi S, Kilroy SM, et al. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A. 2000;97(1):55–60. doi: 10.1073/pnas.97.1.55
  • Singh I, Contreras A, Cordero J, et al. MiCEE is a ncRNA-protein complex that mediates epigenetic silencing and nucleolar organization. Nat Genet. 2018;50(7):990–1001. doi: 10.1038/s41588-018-0139-3
  • Wang X, Hu X, Song W, et al. Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Res. 2021;31(6):664–683. doi: 10.1038/s41422-020-00458-6
  • Wang L, Li J, Zhou H, et al. A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability. Nat Commun. 2021;12(1):5572. doi: 10.1038/s41467-021-25827-6
  • Chu W, Zhang X, Qi L, et al. The EZH2–PHACTR2–AS1–ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer. Cancer Res. 2020;80(13):2737–2750. doi: 10.1158/0008-5472.CAN-19-3326
  • Wu M, Xu G, Han C, et al. lncRNA SLERT controls phase separation of FC/DFCs to facilitate pol I transcription. Science. 2021;373(6554):547–555. doi: 10.1126/science.abf6582
  • Xing YH, Yao, RW, Zhang, Y, et al. SLERT regulates DDX21 rings associated with pol I transcription. Cell. 2017;169(4):664–678 e16. doi: 10.1016/j.cell.2017.04.011
  • Kufel J, Grzechnik P. Small Nucleolar RNAs Tell a Different Tale. Trends Genet. 2019;35(2):104–117. doi: 10.1016/j.tig.2018.11.005
  • Wu H, Yin Q-F, Luo Z, et al. Unusual processing generates SPA LncRNAs that sequester multiple RNA binding proteins. Mol Cell. 2016;64(3):534–548. doi: 10.1016/j.molcel.2016.10.007
  • Yin QF, Yang L, Zhang Y, et al. Long noncoding RNAs with snoRNA ends. Mol Cell. 2012;48(2):219–230. doi: 10.1016/j.molcel.2012.07.033
  • Boulon S, Verheggen C, Jady BE, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell. 2004;16(5):777–787. doi: 10.1016/j.molcel.2004.11.013
  • Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20(14):3617–3622. doi: 10.1093/emboj/20.14.3617
  • Huang W, Sun Y-M, Pan Q, et al. The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov. 2022;8(1):117. doi: 10.1038/s41421-022-00460-9
  • Li Z, Liu L, Feng C, et al. LncBook 2.0: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res. 2023;51(D1):D186–D191. doi: 10.1093/nar/gkac999
  • Chen J, Lin J, Hu Y, et al. Rnadisease v4.0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res. 2023;51(D1):D1397–D1404. doi: 10.1093/nar/gkac814
  • Cui T, Dou Y, Tan P, et al. Rnalocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation. Nucleic Acids Res. 2022;50(D1):D333–D339. doi: 10.1093/nar/gkab825
  • Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–1120. doi: 10.1038/ng.2764
  • International Cancer Genome Consortium; Hudson TJ, Anderson W, Artez A, et al. International network of cancer genome projects. Nature. 2010;464:993–998
  • Huang Z, Shi J, Gao Y, et al. HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 2019;47(D1):D1013–D1017. doi: 10.1093/nar/gky1010
  • Baysoy A, Bai Z, Satija R, et al. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;24(10):1–19. doi: 10.1038/s41580-023-00615-w
  • Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24(8):1–22. doi: 10.1038/s41576-023-00580-2
  • Colognori D, Trinidad M, Doudna JA. Precise transcript targeting by CRISPR-Csm complexes. Nat Biotechnol. 2023;41(9):1256–1264. doi: 10.1038/s41587-022-01649-9
  • Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–447. doi: 10.1038/s41580-022-00566-8
  • Shi J, Zhou T, Chen Q. Exploring the expanding universe of small RNAs. Nat Cell Biol. 2022;24(4):415–423. doi: 10.1038/s41556-022-00880-5
  • Hutten S, Westman BJ, Boisvert FM et al. The nucleolus. Genome Organization And Function In The Cell Nucleus. 2011;279–307. doi:10.1002/9783527639991.ch12.
  • Bergeron D, Paraqindes H, Fafard-Couture É, et al. snoDB 2.0: an enhanced interactive database, specializing in human snoRnas. Nucleic Acids Res. 2023;51(D1):D291–D296. doi: 10.1093/nar/gkac835
  • Huang ZH, Du YP, Wen JT, et al. snoRnas: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 2022;8(1):259. doi: 10.1038/s41420-022-01056-8
  • Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002;109(2):145–148. doi: 10.1016/S0092-8674(02)00718-3
  • Brameier M, Herwig A, Reinhardt R, et al. Human box C/D snoRnas with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2011;39(2):675–686. doi: 10.1093/nar/gkq776
  • Ender C, Krek A, Friedländer MR, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32(4):519–528. doi: 10.1016/j.molcel.2008.10.017
  • Taft RJ, Glazov EA, Lassmann T, et al. Small RNAs derived from snoRNAs. RNA. 2009;15(7):1233–1240. doi: 10.1261/rna.1528909
  • Mitchell JR, Cheng J, Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3´ end. Mol Cell Biol. 1999;19(1):567–576. doi: 10.1128/MCB.19.1.567
  • Chu S, Archer RH, Zengel JM, et al. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A. 1994;91(2):659–663. doi: 10.1073/pnas.91.2.659
  • Goldfarb KC, Cech TR. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev. 2017;31(1):59–71. doi: 10.1101/gad.286963.116
  • Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7(1):12429. doi: 10.1038/ncomms12429
  • Lee TA, Han H, Polash A, et al. The nucleolus is the site for inflammatory RNA decay during infection. Nat Commun. 2022;13(1):5203. doi: 10.1038/s41467-022-32856-2
  • Lu Y, Li C, Zhang K, et al. Identification of piRnas in Hela cells by massive parallel sequencing. BMB Rep. 2010;43(9):635–641. doi: 10.5483/BMBRep.2010.43.9.635
  • Elhamamsy AR, Metge BJ, Alsheikh HA, et al. Ribosome biogenesis: a central player in cancer metastasis and therapeutic resistance. Cancer Res. 2022;82(13):2344–2353. doi: 10.1158/0008-5472.CAN-21-4087
  • Corman A, Sirozh O, Lafarga V, et al. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci. 2022;48(3):274–287. doi: 10.1016/j.tibs.2022.09.006
  • Burger K, Mühl B, Harasim T, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285(16):12416–12425. doi: 10.1074/jbc.M109.074211
  • Volders PJ, Anckaert J, Verheggen K, et al. Lncipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res. 2019;47(D1):D135–D139. doi: 10.1093/nar/gky1031
  • Mayer C, Schmitz KM, Li J, et al. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell. 2006;22(3):351–361. doi: 10.1016/j.molcel.2006.03.028
  • Wehner S, Dorrich AK, Ciba P, et al. pRNA. RNA Biology. 2014;11(1):3–9. doi: 10.4161/rna.27448
  • Yap K, Mukhina S, Zhang G, et al. A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol Cell. 2018;72(3):525–540 e13. doi: 10.1016/j.molcel.2018.08.041
  • Bierhoff H, Dammert M, Brocks D, et al. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell. 2014;54(4):675–682. doi: 10.1016/j.molcel.2014.03.032
  • Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell. 2012;45(2):147–157. doi: 10.1016/j.molcel.2011.12.012
  • Liao M, Liao W, Xu N, et al. LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine. 2019;41:200–213. doi: 10.1016/j.ebiom.2019.01.035
  • Papaioannou D, Petri A, Dovey OM, et al. The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun. 2019;10(1):5351. doi: 10.1038/s41467-019-13259-2
  • Jacobson MR, Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A. 1998;95(14):7981–7986. doi: 10.1073/pnas.95.14.7981
  • Abdelmohsen K, Panda AC, Kang M-J, et al. 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res. 2014;42(15):10099–10111. doi: 10.1093/nar/gku686
  • Yuan H, Ren Q, Du Y, et al. LncRNA miR663AHG represses the development of colon cancer in a miR663a-dependent manner. Cell Death Discov. 2023;9(1):220. doi: 10.1038/s41420-023-01510-1
  • Yu Y, Chen X, Cang S. Cancer-related long noncoding RNAs show aberrant expression profiles and competing endogenous RNA potential in esophageal adenocarcinoma. Oncol Lett. 2019;18:4798–4808. doi:10.3892/ol.2019.10808
  • Liu W, Zhang Y, Chen M, et al. A genome-wide analysis of long noncoding RNA profile identifies differentially expressed lncRnas associated with esophageal cancer. Cancer Med. 2018;7(8):4181–4189. doi: 10.1002/cam4.1536
  • Lu W, Xu Y, Xu J, et al. Identification of differential expressed lncRnas in human thyroid cancer by a genome-wide analyses. Cancer Med. 2018;7(8):3935–3944. doi: 10.1002/cam4.1627
  • Wu P, Cai J, Chen Q, et al. Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-met pathway by competitively binding with miR-20b-3p. Nat Commun. 2019;10(1):2045. doi: 10.1038/s41467-019-10025-2
  • Jeong J, Hamza MT, Kang K, et al. Tetraarsenic oxide affects non-coding RNA transcriptome through deregulating polycomb complexes in MCF7 cells. Adv Biol Regul. 2021;80:100809. doi: 10.1016/j.jbior.2021.100809
  • Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Walter P, Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 1982;299(5885):691–698. doi: 10.1038/299691a0
  • Ullu E, Tschudi C. Alu sequences are processed 7SL RNA genes. Nature. 1984;312(5990):171–172. doi: 10.1038/312171a0
  • Wong LH, Brettingham-Moore KH, Chan L, et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res. 2007;17(8):1146–1160. doi: 10.1101/gr.6022807
  • Ting DT, Lipson D, Paul S, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331(6017):593–596. doi: 10.1126/science.1200801
  • Landers CC, Rabeler CA, Ferrari EK, et al. Ectopic expression of pericentric HSATII RNA results in nuclear RNA accumulation, MeCP2 recruitment, and cell division defects. Chromosoma. 2021;130(1):75–90. doi: 10.1007/s00412-021-00753-0
  • Hall LL, Byron M, Carone DM, et al. Demethylated HSATII DNA and HSATII RNA foci sequester PRC1 and MeCP2 into cancer-specific nuclear bodies. Cell Rep. 2017;18(12):2943–2956. doi: 10.1016/j.celrep.2017.02.072
  • Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51. doi: 10.1016/j.cell.2018.03.006
  • Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20(1):5–20. doi: 10.1038/s41580-018-0059-1
  • Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRnas. Nucleic Acids Res. 2019;47(7):3353–3364. doi: 10.1093/nar/gkz097
  • Fromm B, Høye E, Domanska D, et al. MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res. 2022;50(D1):D204–D210. doi: 10.1093/nar/gkab1101
  • Lambert M, Benmoussa A, Provost P. Small non-coding RNAs derived from eukaryotic ribosomal RNA. Noncoding RNA. 2019;5(1):16. doi: 10.3390/ncrna5010016
  • Wei H, Zhou B, Zhang F, et al. Profiling and identification of small rDNA-derived RNAs and their potential biological functions. PLoS One. 2013;8(2):e56842. doi: 10.1371/journal.pone.0056842
  • Yoshikawa M, Fujii YR. Human ribosomal RNA-Derived resident MicroRNAs as the transmitter of information upon the cytoplasmic cancer stress. Biomed Res Int. 2016;2016:7562085. doi:10.1155/2016/7562085
  • Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712. doi: 10.3390/ijms17101712
  • Khalilian S, Hosseini Imani SZ, Ghafouri-Fard S. Emerging roles and mechanisms of miR-206 in human disorders: a comprehensive review. Cancer Cell Int. 2022;22(1):412. doi: 10.1186/s12935-022-02833-2
  • Jacob F. Evolution and tinkering. Science. 1977;196(4295):1161–1166. doi: 10.1126/science.860134