758
Views
0
CrossRef citations to date
0
Altmetric
Research article

The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B

ORCID Icon, , , , &
Article: 2288476 | Received 02 Oct 2023, Accepted 20 Nov 2023, Published online: 05 Dec 2023

References

  • Barrowman J, Michaelis S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol Chem. 2009 Aug;390(8):761–18. doi: 10.1515/BC.2009.080
  • Cenni V, Capanni C, Mattioli E, et al. Lamin a involvement in ageing processes. Ageing Res Rev. 2020 Sep;62:101073
  • Dorado B, Andres V. A-type lamins and cardiovascular disease in premature aging syndromes. Curr Opin Cell Biol. 2017 Jan 10;46:17–25. doi: 10.1016/j.ceb.2016.12.005
  • Worman HJ. Nuclear lamins and laminopathies. J Pathol. 2012 Jan;226(2):316–325. doi: 10.1002/path.2999
  • Worman HJ, Fong LG, Muchir A, et al. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest. 2009 Jul;119(7):1825–1836. doi: 10.1172/JCI37679
  • Worman HJ, Michaelis S. Permanently farnesylated prelamin A, progeria, and atherosclerosis. Circulation. 2018 Jul 17;138(3):283–286
  • Butin-Israeli V, Adam SA, Goldman AE, et al. Nuclear lamin functions and disease. Trends Genet. 2012 Sep;28(9):464–471. doi: 10.1016/j.tig.2012.06.001
  • Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12(5):222. doi: 10.1186/gb-2011-12-5-222
  • Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84(1):131–164. doi: 10.1146/annurev-biochem-060614-034115
  • Osmanagic-Myers S, Dechat T, Foisner R. Lamins at the crossroads of mechanosignaling. Genes Dev. 2015 Feb 1;29(3):225–237. doi: 10.1101/gad.255968.114
  • Shimi T, Kittisopikul M, Tran J, et al. Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell. 2015 Nov 5;26(22):4075–4086. doi: 10.1091/mbc.E15-07-0461
  • Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016 Feb;17(2):110–122. doi: 10.1038/nrm.2015.11
  • Quigley A, Dong YY, Pike AC, et al. The structural basis of ZMPSTE24-dependent laminopathies. Science. 2013 Mar 29;339(6127):1604–1607. doi: 10.1126/science.1231513
  • Simon DN, Wilson KL. Partners and post-translational modifications of nuclear lamins. Chromosoma. 2013 Mar;122(1–2):13–31. doi: 10.1007/s00412-013-0399-8
  • Bergo MO, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin a processing defect. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13049–13054. doi: 10.1073/pnas.192460799
  • Pendas AM, Zhou Z, Cadinanos J, et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet. 2002 May;31(1):94–99. doi: 10.1038/ng871
  • Gordon LB, Cao K, Collins FS. Progeria: translational insights from cell biology. J Cell Bio. 2012 Oct 1;199(1):9–13. doi: 10.1083/jcb.201207072
  • Gordon LB, Rothman FG, Lopez-Otin C, et al. Progeria: a paradigm for translational medicine. Cell. 2014 Jan 30;156(3):400–407. doi: 10.1016/j.cell.2013.12.028
  • Hennekam RC. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A. 2006 Dec 1;140(23):2603–2624. doi: 10.1002/ajmg.a.31346
  • Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008 Feb 7;358(6):592–604. doi: 10.1056/NEJMoa0706898
  • Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin a causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8963–8968. doi: 10.1073/pnas.0402943101
  • Sandre-Giovannoli A D, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003 Jun 27;300(5628):2055. doi: 10.1126/science.1084125
  • Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin a cause Hutchinson-Gilford progeria syndrome. Nature. 2003 May 15;423(6937):293–298. doi: 10.1038/nature01629
  • Capell BC, Collins FS, Nabel EG. Mechanisms of cardiovascular disease in accelerated aging syndromes. Circ Res. 2007 Jul 6;101(1):13–26. doi: 10.1161/CIRCRESAHA.107.153692
  • Navarro CL, Esteves-Vieira V, Courrier S, et al. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. Eur J Hum Genet. 2014 Aug;22(8):1002–1011. doi: 10.1038/ejhg.2013.258
  • Spear ED, Hsu ET, Nie L, et al. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis Model Mech. 2018 Jul 13;11(7). doi: 10.1242/dmm.033670
  • Moulson CL, Go G, Gardner JM, et al. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol. 2005 Nov;125(5):913–919. doi: 10.1111/j.0022-202X.2005.23846.x
  • Navarro CL, Cadinanos J, De Sandre-Giovannoli A, et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of lamin a precursors. Hum Mol Genet. 2005 Jun 1;14(11):1503–1513. doi: 10.1093/hmg/ddi159
  • Agarwal AK, Fryns JP, Auchus RJ, et al. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003 Aug 15;12(16):1995–2001. doi: 10.1093/hmg/ddg213
  • Ben Yaou R, Navarro C, Quijano-Roy S, et al. Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. Eur J Hum Genet. 2011 Jun;19(6):647–654. doi: 10.1038/ejhg.2010.256
  • Shackleton S, Smallwood DT, Clayton P, et al. Compound heterozygous ZMPSTE24 mutations reduce prelamin a processing and result in a severe progeroid phenotype. J Med Genet. 2005 Jun;42(6):e36. doi: 10.1136/jmg.2004.029751
  • Barrowman J, Wiley PA, Hudon-Miller SE, et al. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum Mol Genet. 2012 Sep 15;21(18):4084–4093. doi: 10.1093/hmg/dds233
  • Spear ED, Alford RF, Babatz TD, et al. A humanized yeast system to analyze cleavage of prelamin a by ZMPSTE24. Methods. 2019 Mar 15;157:47–55. doi: 10.1016/j.ymeth.2019.01.001
  • Ahmad Z, Zackai E, Medne L, et al. Early onset mandibuloacral dysplasia due to compound heterozygous mutations in ZMPSTE24. Am J Med Genet A. 2010 Nov;152A(11):2703–2710. doi: 10.1002/ajmg.a.33664
  • Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12879–12884. doi: 10.1073/pnas.0506001102
  • Capell BC, Olive M, Erdos MR, et al. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15902–15907. doi: 10.1073/pnas.0807840105
  • Glynn MW, Glover TW. Incomplete processing of mutant lamin a in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet. 2005 Oct 15;14(20):2959–2969. doi: 10.1093/hmg/ddi326
  • Mallampalli MP, Huyer G, Bendale P, et al. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14416–14421. doi: 10.1073/pnas.0503712102
  • Toth JI, Yang SH, Qiao X, et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12873–12878. doi: 10.1073/pnas.0505767102
  • Yang SH, Bergo MO, Toth JI, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10291–10296. doi: 10.1073/pnas.0504641102
  • Yang SH, Meta M, Qiao X, et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest. 2006 Aug;116(8):2115–2121. doi: 10.1172/JCI28968
  • Yang SH, Qiao X, Fong LG, et al. Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta. 2008 Jan-Feb;1781(1–2):36–39. doi: 10.1016/j.bbalip.2007.11.003
  • Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16666–16671. doi: 10.1073/pnas.1202529109
  • Gordon LB, Massaro J, D’Agostino RB Sr., et al. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation. 2014 Jul 1;130(1):27–34. doi: 10.1161/CIRCULATIONAHA.113.008285
  • Gordon LB, Shappell H, Massaro J, et al. Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA. 2018 Apr 24;319(16):1687–1695. doi: 10.1001/jama.2018.3264
  • Gordon LB, Norris W, Hamren S, et al. Plasma Progerin in Patients With Hutchinson-Gilford Progeria Syndrome: Immunoassay Development and Clinical Evaluation. Circulation. 2023 Jun 6;147(23):1734–1744. doi: 10.1161/CIRCULATIONAHA.122.060002
  • Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 2006 Mar 17;311(5767):1621–1623. doi: 10.1126/science.1124875
  • Akinci B, Sankella S, Gilpin C, et al. Progeroid syndrome patients with ZMPSTE24 deficiency could benefit when treated with rapamycin and dimethylsulfoxide. Cold Spring Harb Mol Case Stud. 2017 Jan;3(1):a001339. doi: 10.1101/mcs.a001339
  • Cao K, Capell BC, Erdos MR, et al. A lamin a protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4949–4954. doi: 10.1073/pnas.0611640104
  • Bai S, Lozada A, Jones MC, et al. Mandibuloacral dysplasia caused by LMNA mutations and Uniparental Disomy. Case Rep Genet. 2014;2014:508231. doi: 10.1155/2014/508231
  • Garg A, Subramanyam L, Agarwal AK, et al. Atypical progeroid syndrome due to heterozygous missense LMNA mutations. J Clin Endocrinol Metab. 2009 Dec;94(12):4971–4983. doi: 10.1210/jc.2009-0472
  • Wang Y, Lichter-Konecki U, Anyane-Yeboa K, et al. A mutation abolishing the ZMPSTE24 cleavage site in prelamin a causes a progeroid disorder. J Cell Sci. 2016 May 15;129(10):1975–1980. doi: 10.1242/jcs.187302
  • Shilagardi K, Spear ED, Abraham R, et al. The integral membrane protein ZMPSTE24 protects cells from SARS-CoV-2 spike-mediated pseudovirus infection and syncytia formation. MBio. 2022 Oct 26;13(5):e0254322. doi: 10.1128/mbio.02543-22
  • Wang Y, Shilagardi K, Hsu T, et al. Abolishing the prelamin a ZMPSTE24 cleavage site leads to progeroid phenotypes with near-normal longevity in mice. Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2118695119
  • Verstraeten VL, Peckham LA, Olive M, et al. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4997–5002. doi: 10.1073/pnas.1019532108
  • Babatz TD, Spear ED, Xu W, et al. Site specificity determinants for prelamin a cleavage by the zinc metalloprotease ZMPSTE24. J Biol Chem. 2021 Jan-Jun;296:100165
  • Trani JP, Chevalier R, Caron L, et al. Mesenchymal stem cells derived from patients with premature aging syndromes display hallmarks of physiological aging. Life Sci Alliance. 2022 Sep 14;5(12):e202201501. doi: 10.26508/lsa.202201501
  • Verstraeten VL, Broers JL, van Steensel MA, et al. Compound heterozygosity for mutations in LMNA causes a progeria syndrome without prelamin a accumulation. Hum Mol Genet. 2006 Aug 15;15(16):2509–2522. doi: 10.1093/hmg/ddl172
  • Rankin J, Auer-Grumbach M, Bagg W, et al. Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. Am J Med Genet A. 2008 Jun 15;146A(12):1530–1542. doi: 10.1002/ajmg.a.32331
  • Barrowman J, Hamblet C, Kane MS, et al. Requirements for efficient proteolytic cleavage of prelamin a by ZMPSTE24. PLoS One. 2012;7(2):e32120. doi: 10.1371/journal.pone.0032120
  • Coffinier C, Hudon SE, Farber EA, et al. HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13432–13437. doi: 10.1073/pnas.0704212104
  • Tu Y, Sanchez-Iglesias S, Araujo-Vilar D, et al. LMNA missense mutations causing familial partial lipodystrophy do not lead to an accumulation of prelamin a. Nucleus. 2016 Sep 2;7(5):512–521. doi: 10.1080/19491034.2016.1242542
  • Misteli T. Farnesyltransferase inhibition in HGPS. Cell. 2021 Jan 21;184(2):293. doi: 10.1016/j.cell.2020.12.029
  • Suzuki M, Jeng LJB, Chefo S, et al. FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Genet Med. 2023 Feb;25(2):100335. doi: 10.1016/j.gim.2022.11.003
  • Kane MS, Lindsay ME, Judge DP, et al. LMNA-associated cardiocutaneous progeria: an inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A. 2013 Jul;161A(7):1599–1611. doi: 10.1002/ajmg.a.35971
  • Motegi S, Uchiyama A, Yamada K, et al. Increased susceptibility to oxidative stress- and ultraviolet A-induced apoptosis in fibroblasts in atypical progeroid syndrome/atypical Werner syndrome with LMNA mutation. Exp Dermatol. 2016 Aug;Suppl 25(S3):20–27. doi: 10.1111/exd.13086
  • Yang SH, Andres DA, Spielmann HP, et al. Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest. 2008 Oct;118(10):3291–3300. doi: 10.1172/JCI35876
  • Yang SH, Chang SY, Ren S, et al. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum Mol Genet. 2011 Feb 1;20(3):436–444. doi: 10.1093/hmg/ddq490
  • Csoka AB, Cao H, Sammak PJ, et al. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet. 2004 Apr;41(4):304–308. doi: 10.1136/jmg.2003.015651
  • Velcade RL. (Bortezomib) receives 2 New FDA indications: for retreatment of patients with multiple myeloma and for first-line treatment of patients with Mantle-Cell Lymphoma. Am Health Drug Benefits. 2015 Mar;8(Spec Feature):135–140.
  • Doubaj Y, De Sandre-Giovannoli A, Vera EV, et al. An inherited LMNA gene mutation in atypical Progeria syndrome. Am J Med Genet A. 2012 Nov;158A(11):2881–2887. doi: 10.1002/ajmg.a.35557