1,249
Views
1
CrossRef citations to date
0
Altmetric
Review

Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression

, &
Article: 2293604 | Received 29 Sep 2023, Accepted 07 Dec 2023, Published online: 14 Dec 2023

References

  • Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the histone locus body. RNA Biol. 2017;14(6):726–11. doi: 10.1080/15476286.2016.1265198
  • Marzluff WF, Koreski KP. Birth and death of histone mRnas. Trends Genet. 2017;33(10):745–759. doi: 10.1016/j.tig.2017.07.014
  • Tatomer DC, Rizzardi LF, Curry KP, et al. Drosophila symplekin localizes dynamically to the histone locus body and tricellular junctions. Nucleus. 2014;5(6):613–625. doi: 10.4161/19491034.2014.990860
  • Dominski Z, Tong L. U7 deciphered: the mechanism that forms the unusual 3’ end of metazoan replication-dependent histone mRnas. Biochem Soc Trans. 2021;49:2229–40. doi: 10.1042/BST20210323
  • Liu JL, Murphy C, Buszczak M, et al. The Drosophila melanogaster Cajal body. J Cell Bio. 2006;172(6):875–884. doi: 10.1083/jcb.200511038
  • Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10(1):1930. doi: 10.1038/s41467-019-09982-5
  • Quinodoz SA, Jachowicz JW, Bhat P, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184:5775–90 e30. doi: 10.1016/j.cell.2021.10.014
  • White AE, Burch BD, Yang XC, et al. Drosophila histone locus bodies form by hierarchical recruitment of components. J Cell Bio. 2011;193(4):677–694. doi: 10.1083/jcb.201012077
  • Zhao J, Dynlacht B, Imai T, et al. Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry. Genes Dev. 1998;12(4):456–461. doi: 10.1101/gad.12.4.456
  • Ma T, Van Tine BA, Wei Y, et al. Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev. 2000;14:2298–313. doi: 10.1101/gad.829500
  • Zhao J, Kennedy BK, Lawrence BD, et al. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev. 2000;14:2283–97. doi: 10.1101/gad.827700
  • Yang XC, Sabath I, Kunduru L, et al. A conserved interaction that is essential for the biogenesis of histone locus bodies. J Biol Chem. 2014;289:33767–82. doi: 10.1074/jbc.M114.616466
  • Armstrong C, Passanisi VJ, Ashraf HM, et al. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. Cell Rep. 2023;42(7):112768. doi: 10.1016/j.celrep.2023.112768
  • Barcaroli D, Bongiorno-Borbone L, Terrinoni A, et al. FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci U S A. 2006;103(40):14808–14812. doi: 10.1073/pnas.0604227103
  • Kemp JP Jr., Yang XC, Dominski Z, et al. Superresolution light microscopy of the Drosophila histone locus body reveals a core–shell organization associated with expression of replication–dependent histone genes. MBoC. 2021;32:942–55. doi: 10.1091/mbc.E20-10-0645
  • Terzo EA, Lyons SM, Poulton JS, et al. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body. MBoC. 2015;26:1559–74. doi: 10.1091/mbc.E14-10-1445
  • Godfrey AC, White AE, Tatomer DC, et al. The Drosophila U7 snRNP proteins Lsm10 and Lsm11 are required for histone pre-mRNA processing and play an essential role in development. RNA. 2009;15(9):1661–1672. doi: 10.1261/rna.1518009
  • Courchaine E, Gelles-Watnick S, Machyna M, et al. The coilin N-terminus mediates multivalent interactions between coilin and Nopp140 to form and maintain Cajal bodies. Nat Commun. 2022;13(1):6005. doi: 10.1038/s41467-022-33434-2
  • Hur W, Kemp JP Jr., Tarzia M, et al. CDK-Regulated phase separation seeded by histone genes ensures precise growth and function of histone locus bodies. Dev Cell. 2020;54:379–94 e6. doi: 10.1016/j.devcel.2020.06.003
  • Miele A, Braastad CD, Holmes WF, et al. HiNF-P directly links the cyclin E/CDK2/p220NPAT pathway to histone H4 gene regulation at the G1/S phase cell cycle transition. Mol Cell Biol. 2005;25(14):6140–6153. doi: 10.1128/MCB.25.14.6140-6153.2005
  • Ghule PN, Xie RL, Colby JL, et al. p53 checkpoint ablation exacerbates the phenotype of hinfp dependent histone H4 deficiency. Cell Cycle. 2015;14(15):2501–2508. doi: 10.1080/15384101.2015.1049783
  • Ghule PN, Boyd JR, Kabala F, et al. Spatiotemporal higher-order chromatin landscape of human histone gene clusters at histone locus bodies during the cell cycle in breast cancer progression. Gene. 2023;872:147441. doi: 10.1016/j.gene.2023.147441
  • Rieder LE, Koreski KP, Boltz KA, et al. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev. 2017;31(14):1494–1508. doi: 10.1101/gad.300855.117
  • Salzler HR, Tatomer DC, Malek PY, et al. A sequence in the Drosophila H3-H4 promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRnas. Dev Cell. 2013;24(6):623–634. doi: 10.1016/j.devcel.2013.02.014
  • Kuzu G, Kaye EG, Chery J, et al. Expansion of GA dinucleotide repeats increases the density of CLAMP binding sites on the X-Chromosome to promote Drosophila dosage compensation. PLoS Genet. 2016;12(7):e1006120. doi: 10.1371/journal.pgen.1006120
  • Tikhonova E, Fedotova A, Bonchuk A, et al. The simultaneous interaction of MSL2 with CLAMP and DNA provides redundancy in the initiation of dosage compensation in Drosophila males. Development. 2019;146. doi: 10.1242/dev.179663
  • Koreski KP, Rieder LE, McLain LM, et al. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell. 2020;31(14):1525–1537. doi: 10.1091/mbc.E20-03-0176
  • Hodkinson LJ, Smith C, Comstra HS, et al. A bioinformatics screen reveals hox and chromatin remodeling factors at the Drosophila histone locus. BMC Genom Data. 2023;24(1):54. doi: 10.1186/s12863-023-01147-0
  • Sun Y, Zhang Y, Aik WS, et al. Structure of an active human histone pre-mRNA 3’-end processing machinery. Science. 2020;367:700–3. doi: 10.1126/science.aaz7758
  • Yang XC, Sabath I, Debski J, et al. A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3’-end processing. Mol Cell Biol. 2013;33:28–37. doi: 10.1128/MCB.00653-12
  • Yang XC, Sun Y, Aik WS, et al. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5’-3’ exonuclease. RNA. 2020;26:1345–59. doi: 10.1261/rna.076273.120
  • Lanzotti DJ, Kaygun H, Yang X, et al. Developmental control of histone mRNA and dSLBP synthesis during Drosophila embryogenesis and the role of dSLBP in histone mRNA 3’ end processing in vivo. Mol Cell Biol. 2002;22:2267–82. doi: 10.1128/MCB.22.7.2267-2282.2002
  • Gajduskova P, Ruiz de Los Mozos I, Rajecky M, et al. CDK11 is required for transcription of replication-dependent histone genes. Nat Struct Mol Biol. 2020;27(5):500–510. doi: 10.1038/s41594-020-0406-8
  • Saldi T, Fong N, Bentley DL. Transcription elongation rate affects nascent histone pre-mRNA folding and 3’ end processing. Genes Dev. 2018;32:297–308. doi: 10.1101/gad.310896.117
  • Sullivan KD, Mullen TE, Marzluff WF, et al. Knockdown of SLBP results in nuclear retention of histone mRNA. RNA. 2009;15(3):459–472. doi: 10.1261/rna.1205409
  • Chen D, Chen QY, Wang Z, et al. Polyadenylation of histone H3.1 mRNA promotes cell transformation by displacing H3.3 from gene regulatory elements. iScience. 2020;23:101518. doi: 10.1016/j.isci.2020.101518
  • Bucholc K, Aik WS, Yang XC, et al. Composition and processing activity of a semi-recombinant holo U7 snRNP. Nucleic Acids Res. 2020;48(3):1508–1530. doi: 10.1093/nar/gkz1148
  • Ohtomo T, Horii T, Nomizu M, et al. Molecular cloning of a structural homolog of YY1AP, a coactivator of the multifunctional transcription factor YY1. Amino Acids. 2007;33(4):645–652. doi: 10.1007/s00726-006-0482-z
  • Bulchand S, Menon SD, George SE, et al. Muscle wasted: a novel component of the Drosophila histone locus body required for muscle integrity. J Cell Sci. 2010;123(16):2697–2707. doi: 10.1242/jcs.063172
  • Bucholc K, Skrajna A, Adamska K, et al. Structural analysis of the SANT/Myb domain of FLASH and YARP proteins and their complex with the C-Terminal fragment of NPAT by NMR spectroscopy and computer simulations. Int J Mol Sci. 2020;21(15):21. doi: 10.3390/ijms21155268
  • Seal RL, Denny P, Bruford EA, et al. A standardized nomenclature for mammalian histone genes. Epigenet Chromatin. 2022;15(1):34. doi: 10.1186/s13072-022-00467-2
  • Armstrong C, Spencer SL. Replication-dependent histone biosynthesis is coupled to cell-cycle commitment. Proc Natl Acad Sci U S A. 2021;118(31):118. doi: 10.1073/pnas.2100178118
  • Fritz AJ, Ghule PN, Boyd JR, et al. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer. J Cell Physiol. 2018;233(2):1278–1290. doi: 10.1002/jcp.25996
  • Bongartz P, Schloissnig S. Deep repeat resolution-the assembly of the Drosophila histone complex. Nucleic Acids Res. 2019;47:e18. doi: 10.1093/nar/gky1194
  • Chaubal A, Waldern JM, Taylor C, et al. Coordinated expression of replication-dependent histone genes from multiple loci promotes histone homeostasis in Drosophila. Mol Biol Cell. 2023;34(12):mbcE22110532. doi: 10.1091/mbc.E22-11-0532
  • Potter-Birriel JM, Gonsalvez GB, Marzluff WF. A region of SLBP outside the mRNA-processing domain is essential for deposition of histone mRNA into the Drosophila egg. J Cell Sci. 2021;134(3):134. doi: 10.1242/jcs.251728
  • Sullivan E, Santiago C, Parker ED, et al. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. Genes Dev. 2001;15(2):173–187. doi: 10.1101/gad.862801
  • He WX, Wu M, Liu Z, et al. Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis. RNA. 2018;24(12):1738–1748. doi: 10.1261/rna.067090.118
  • Chari S, Wilky H, Govindan J, et al. Histone concentration regulates the cell cycle and transcription in early development. Development. 2019;146(19). doi: 10.1242/dev.177402
  • White AE, Leslie ME, Calvi BR, et al. Developmental and cell cycle regulation of the Drosophila histone locus body. Mol Biol Cell. 2007;18(7):2491–2502. doi: 10.1091/mbc.e06-11-1033
  • Cho CY, Kemp JP Jr., Duronio RJ, et al. Coordinating transcription and replication to mitigate their conflicts in early Drosophila embryos. Cell Rep. 2022;41(3):111507. doi: 10.1016/j.celrep.2022.111507
  • Huang SK, Whitney PH, Dutta S, et al. Spatial organization of transcribing loci during early genome activation in Drosophila. Curr Biol. 2021;31:5102–10 e5. doi: 10.1016/j.cub.2021.09.027
  • Blythe SA, Wieschaus EF. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. Elife. 2016;5. doi: 10.7554/eLife.20148
  • Lu F, Park BJ, Fujiwara R, et al. Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription. bioRxiv 2023.
  • Cho CY, O’Farrell PH. Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription. Nat Commun. 2023;14(1):4848. doi: 10.1038/s41467-023-40485-6
  • Hamm DC, Harrison MM. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol. 2018;8(12):180183. doi: 10.1098/rsob.180183
  • Imada T, Shimi T, Kaiho A, et al. RNA polymerase II condensate formation and association with Cajal and histone locus bodies in living human cells. Genes Cells. 2021;26(5):298–312. doi: 10.1111/gtc.12840
  • Becerra S, Andres-Leon E, Prieto-Sanchez S, et al. Prp40 and early events in splice site definition. Wiley Interdiscip Rev RNA. 2016;7(1):17–32. doi: 10.1002/wrna.1312
  • Suzuki H, Abe R, Shimada M, et al. The 3’ pol II pausing at replication-dependent histone genes is regulated by Mediator through Cajal bodies’ association with histone locus bodies. Nat Commun. 2022;13:2905. doi: 10.1038/s41467-022-30632-w
  • Prieto-Sanchez S, Moreno-Castro C, Hernandez-Munain C, et al. Drosophila Prp40 localizes to the histone locus body and regulates gene transcription and development. J Cell Sci. 2020;133. doi: 10.1242/jcs.239509
  • Tucker KE, Berciano MT, Jacobs EY, et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Bio. 2001;154:293–307. doi: 10.1083/jcb.200104083
  • Liu JL, Wu Z, Nizami Z, et al. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell. 2009;20(6):1661–1670. doi: 10.1091/mbc.e08-05-0525
  • Tatomer DC, Terzo E, Curry KP, et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Bio. 2016;213(5):557–570. doi: 10.1083/jcb.201504043
  • Lafontaine DLJ, Riback JA, Bascetin R, et al. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22(3):165–182. doi: 10.1038/s41580-020-0272-6
  • Whitfield ML, Zheng LX, Baldwin A, et al. Stem-loop binding protein, the protein that binds the 3’ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol. 2000;20:4188–98. doi: 10.1128/MCB.20.12.4188-4198.2000
  • Wei Y, Jin J, Harper JW. The cyclin E/Cdk2 substrate and Cajal body component p220(NPAT) activates histone transcription through a novel LisH-like domain. Mol Cell Biol. 2003;23:3669–80. doi: 10.1128/MCB.23.10.3669-3680.2003
  • Iannucci LF, D’Erchia AM, Picardi E, et al. Cyclic AMP induces reversible EPAC1 condensates that regulate histone transcription. Nat Commun. 2023;14(1):5521. doi: 10.1038/s41467-023-41088-x
  • Tanabe K, Awane R, Shoda T, et al. Mutations in mxc tumor-suppressor gene induce chromosome instability in Drosophila male meiosis. Cell Struct Funct. 2019;44(2):121–135. doi: 10.1247/csf.19022
  • Imai F, Yoshizawa A, Matsuzaki A, et al. Stem-loop binding protein is required for retinal cell proliferation, neurogenesis, and intraretinal axon pathfinding in zebrafish. Dev Biol. 2014;394(1):94–109. doi: 10.1016/j.ydbio.2014.07.020
  • Turner KJ, Hoyle J, Valdivia LE, et al. Abrogation of stem loop binding protein (slbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS One. 2019;14(1):e0211073. doi: 10.1371/journal.pone.0211073
  • Platzer M, Rotman G, Bauer D, et al. Ataxia-telangiectasia locus: sequence analysis of 184 kb of human genomic DNA containing the entire ATM gene. Genome Res. 1997;7(6):592–605. doi: 10.1101/gr.7.6.592
  • Saarinen S, Aavikko M, Aittomaki K, et al. Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood. 2011;118(3):493–498. doi: 10.1182/blood-2011-03-341560
  • Kurihara M, Komatsu K, Awane R, et al. Loss of histone locus bodies in the mature hemocytes of larval lymph Gland Result in Hyperplasia of the tissue in mxc mutants of Drosophila. Int J Mol Sci. 2020;21(5):21. doi: 10.3390/ijms21051586
  • Sang R, Wu C, Xie S, et al. Mxc, a Drosophila homolog of mental retardation-associated gene NPAT, maintains neural stem cell fate. Cell Biosci. 2022;12(1):78. doi: 10.1186/s13578-022-00820-8
  • Raczynska KD, Ruepp MD, Brzek A, et al. FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRnps and histone-specific transcription factors. Nucleic Acids Res. 2015;43:9711–9728. doi: 10.1093/nar/gkv794
  • Baechtold H, Kuroda M, Sok J, et al. Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem. 1999;274(48):34337–34342. doi: 10.1074/jbc.274.48.34337
  • Sama RR, Ward CL, Bosco DA. Functions of FUS/TLS from DNA repair to stress response: implications for ALS. ASN Neuro. 2014;6:6. doi: 10.1177/1759091414544472
  • Kwiatkowski TJ Jr., Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208. doi: 10.1126/science.1166066
  • Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–11. doi: 10.1126/science.1165942
  • Gadgil A, Walczak A, Stepien A, et al. ALS-linked FUS mutants affect the localization of U7 snRNP and replication-dependent histone gene expression in human cells. Sci Rep. 2021;11(1):11868. doi: 10.1038/s41598-021-91453-3
  • Wu T, Jun S, Choi EJ, et al. 53BP1-ACLY-SLBP-coordinated activation of replication-dependent histone biogenesis maintains genomic integrity. Nucleic Acids Res. 2022;50(3):1465–1483. doi: 10.1093/nar/gkab1300