2,250
Views
0
CrossRef citations to date
0
Altmetric
Review

Phase separation in DNA double-strand break response

, , , &
Article: 2296243 | Received 07 Mar 2023, Accepted 12 Dec 2023, Published online: 25 Dec 2023

References

  • Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019 Jan 24;176(3):419–10. doi: 10.1016/j.cell.2018.12.035
  • Hofmann S, Kedersha N, Anderson P, et al. Molecular mechanisms of stress granule assembly and disassembly. Biochim Biophys Acta, Mol Cell Res. 2021 Jan;1868(1):118876. doi: 10.1016/j.bbamcr.2020.118876
  • Ilık İA, Aktaş T. Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J. 2022 Nov;289(22):7234–7245. doi: 10.1111/febs.16117
  • O’Flynn BG, Mittag T. The role of liquid-liquid phase separation in regulating enzyme activity. Curr Opin Cell Biol. 2021 Apr;69:70–79. doi: 10.1016/j.ceb.2020.12.012
  • Pinheiro EDS, Preato AM, Petrucci TVB, et al. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol. 2023;14:1160238. doi: 10.3389/fendo.2023.1160238
  • Miao C, Zhang Y, Yu M, et al. HSPA8 regulates anti-bacterial autophagy through liquid-liquid phase separation. Autophagy. 2023 Jun;13:1–17 doi: 10.1080/15548627.2023.2223468
  • Liu D, Lum KK, Treen N, et al. IFI16 phase separation via multi-phosphorylation drives innate immune signaling. Nucleic Acids Res. 2023 Jun 7;51(13):6819–6840. doi: 10.1093/nar/gkad449
  • Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai). 2023 May 30;55(7):1042–1051. doi: 10.3724/abbs.2023093
  • Yasuhara T, Zou L. Impacts of chromatin dynamics and compartmentalization on DNA repair. DNA Repair. 2021 Sep;105:103162. doi: 10.1016/j.dnarep.2021.103162
  • Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer. Cancer Sci. 2020 May;111(5):1443–1451. doi: 10.1111/cas.14404
  • Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat Res Genet Toxicol Environ Mutagen. 2022 Jan;873:503438. doi: 10.1016/j.mrgentox.2021.503438
  • Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016 Jan;26(1):52–64. doi: 10.1016/j.tcb.2015.07.009
  • Zhang K, Huang M, Li A, et al. DIAPH3 condensates formed by liquid-liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling. Cell Rep. 2023 Jan 31;42(1):111986. doi: 10.1016/j.celrep.2022.111986
  • Schvartzman C, Zhao H, Ibarboure E, et al. Control of enzyme reactivity in response to osmotic pressure modulation mimicking dynamic assembly of intracellular organelles. Adv Mater. 2023 May 7;35(33):e2301856. doi: 10.1002/adma.202301856
  • Sahin C, Motso A, Gu X, et al. Mass spectrometry of RNA-Binding proteins during liquid-liquid phase separation reveals distinct assembly mechanisms and droplet architectures. J Am Chem Soc. 2023 May 17;145(19):10659–10668. doi: 10.1021/jacs.3c00932
  • Pintado-Grima C, Bárcenas O, Ventura S. In-silico analysis of pH-Dependent liquid-liquid phase separation in intrinsically disordered proteins. Biomolecules. 2022 Jul 12;12(7):974. doi: 10.3390/biom12070974
  • Lu T, Nakashima KK, Spruijt E. Temperature-responsive peptide-nucleotide coacervates. J Phys Chem B. 2021 Apr 1;125(12):3080–3091. doi: 10.1021/acs.jpcb.0c10839
  • Ukmar-Godec T, Hutten S, Grieshop MP, et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat Commun. 2019 Jul 2;10(1):2909. doi: 10.1038/s41467-019-10792-y
  • Lin Y, Fichou Y, Longhini AP, et al. Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J Mol Biol. 2021 Jan 22;433(2):166731. doi: 10.1016/j.jmb.2020.166731
  • Fang XD, Gao Q, Zang Y, et al. Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. Elife. 2022 Feb 22;11:e74884 doi: 10.7554/eLife.74884
  • Saito M, Hess D, Eglinger J, et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol. 2019 Jan;15(1):51–61 doi: 10.1038/s41589-018-0180-7
  • Song X, Yang F, Yang T, et al. Phase separation of EB1 guides microtubule plus-end dynamics. Nat Cell Biol. 2023 Jan;25(1):79–91 doi: 10.1038/s41556-022-01033-4
  • Lin CC, Suen KM, Jeffrey PA, et al. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Mol Cell. 2022 Mar 17;82(6):1089–1106.e12. doi: 10.1016/j.molcel.2022.02.005
  • Scully R, Panday A, Elango R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019 Nov;20(11):698–714 doi: 10.1038/s41580-019-0152-0
  • Averbek S, Jakob B, Durante M, et al. O-GlcNAcylation affects the pathway choice of DNA double-strand break repair. Int J Mol Sci. 2021 May 27;22(11):5715. doi: 10.3390/ijms22115715
  • Syed A, Tainer JA. The MRE11–RAD50–NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 2018 Jun 20;87(1):263–294. doi: 10.1146/annurev-biochem-062917-012415
  • Cannavo E, Reginato G, Cejka P. Stepwise 5’ DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5505–5513. doi: 10.1073/pnas.1820157116
  • Belan O, Barroso C, Kaczmarczyk A, et al. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol Cell. 2021 Mar 4;81(5):1058–1073.e7. doi: 10.1016/j.molcel.2020.12.020
  • McIlwraith MJ, Vaisman A, Liu Y, et al. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell. 2005 Dec 9;20(5):783–792. doi: 10.1016/j.molcel.2005.10.001
  • Agmon N, Yovel M, Harari Y, et al. The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage. Nucleic Acids Res. 2011 Sep 1;39(16):7009–19. doi: 10.1093/nar/gkr277
  • Zhao B, Rothenberg E, Ramsden DA, et al. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020 Dec;21(12):765–781 doi: 10.1038/s41580-020-00297-8
  • Stucki M, Jackson SP. gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair. 2006 May 10;5(5):534–543. doi: 10.1016/j.dnarep.2006.01.012
  • Chen X, Xu X, Chen Y, et al. Structure of an activated DNA-PK and its implications for NHEJ. Mol Cell. 2021 Feb 18;81(4):801–810.e3. doi: 10.1016/j.molcel.2020.12.015
  • Andres SN, Vergnes A, Ristic D, et al. A human XRCC4-XLF complex bridges DNA. Nucleic Acids Res. 2012 Feb;40(4):1868–1878 doi: 10.1093/nar/gks022
  • Peng PH, Hsu KW, Wu KJ. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am J Cancer Res. 2021;11(8):3766–3776.
  • Shi J, Chen SY, Shen XT, et al. NOP53 undergoes liquid-liquid phase separation and promotes tumor radio-resistance. Cell Death Discovery. 2022;8(1):436 doi: 10.1038/s41420-022-01226-8
  • Ji Y, Li F, Qiao Y. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. J Mater Chem B. 2022 Nov 3;10(42):8616–8628. doi: 10.1039/D2TB01688E
  • Otahalova B, Volkova Z, Soukupova J, et al. Importance of germline and somatic Alterations in human MRE11, RAD50, and NBN Genes coding for MRN complex. Int J Mol Sci. 2023 Mar 15;24(6):5612. doi: 10.3390/ijms24065612
  • Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003 Jan 30;421(6922):499–506. doi: 10.1038/nature01368
  • Kozlov SV, Graham ME, Peng C, et al. Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 2006 Aug 9;25(15):3504–14. doi: 10.1038/sj.emboj.7601231
  • Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998 Mar 6;273(10):5858–68. doi: 10.1074/jbc.273.10.5858
  • Zdravković A, Daley JM, Dutta A, et al. A conserved Ctp1/CtIP C-terminal peptide stimulates Mre11 endonuclease activity. Proc Natl Acad Sci USA. 2021 Mar 16;118(11):e2016287118. doi: 10.1073/pnas.2016287118
  • Eid W, Steger M, El-Shemerly M, et al. DNA end resection by CtIP and exonuclease 1 prevents genomic instability. EMBO Rep. 2010 Dec;11(12):962–968 doi: 10.1038/embor.2010.157
  • Wang YL, Zhao WW, Bai SM, et al. MRNIP condensates promote DNA double-strand break sensing and end resection. Nat Commun. 2022 May 12;13(1):2638. doi: 10.1038/s41467-022-30303-w
  • Bennett LG, Wilkie AM, Antonopoulou E, et al. MRNIP is a replication fork protection factor. Sci Adv. 2020 Jul;6(28):eaba5974 doi: 10.1126/sciadv.aba5974
  • Staples CJ, Barone G, Myers KN, et al. MRNIP/C5orf45 interacts with the MRN complex and contributes to the DNA damage response. Cell Rep. 2016 Sep 6;16(10):2565–2575. doi: 10.1016/j.celrep.2016.07.087
  • Caron MC, Sharma AK, O’Sullivan J, et al. Poly(adp-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat Commun. 2019 Jul 4;10(1):2954. doi: 10.1038/s41467-019-10741-9
  • Nilov DK, Pushkarev SV, Gushchina, IV, et al. Modeling of the enzyme-substrate complexes of human Poly(ADP-Ribose) polymerase 1. Biochemistry (Mosc). 2020 Jan;85(1):99–107 doi: 10.1134/S0006297920010095
  • Altmeyer M, Neelsen KJ, Teloni F, et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun. 2015 Aug 19;6(1):8088. doi: 10.1038/ncomms9088
  • Matkarimov BT, Zharkov DO, Saparbaev MK. Mechanistic insight into the role of Poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage. Mutagenesis. 2020 Feb 13;35(1):107–118. doi: 10.1093/mutage/gez045
  • Haince JF, McDonald D, Rodrigue A, et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem. 2008 Jan 11;283(2):1197–208. doi: 10.1074/jbc.M706734200
  • Rhine K, Dasovich M, Yoniles J, et al. Poly(adp-ribose) drives condensation of FUS via a transient interaction. Mol Cell. 2022 Mar 3;82(5):969–985.e11. doi: 10.1016/j.molcel.2022.01.018
  • Miwa M, Ida C, Yamashita S, et al. Poly(adp-ribose): structure, physicochemical properties and quantification in Vivo, with special reference to Poly(ADP-ribose) binding protein modules. Curr Protein Pept Sci. 2016;17(7):683–692. doi: 10.2174/1389203717666160419145246
  • Kim JJ, Lee SY, Hwang Y, et al. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Res. 2021 Nov 8;49(19):11083–11102. doi: 10.1093/nar/gkab892
  • Kang HC, Lee YI, Shin JH, et al. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14103–8. doi: 10.1073/pnas.1108799108
  • Krietsch J, Caron MC, Gagné JP, et al. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res. 2012 Nov 1;40(20):10287–301. doi: 10.1093/nar/gks798
  • Taiana E, Ronchetti D, Todoerti K, et al. LncRNA NEAT1 in Paraspeckles: a structural scaffold for cellular DNA damage response systems? Noncoding RNA. 2020;6(3):26. doi: 10.3390/ncrna6030026
  • Adriaens C, Standaert L, Barra J, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016 Aug;22(8):861–8 doi: 10.1038/nm.4135
  • Kang J, Lim L, Lu Y, et al. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids. PLoS Biol. 2019 Jun;17(6):e3000327 doi: 10.1371/journal.pbio.3000327
  • Lee M, Ghosh U, Thurber KR, et al. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Nat Commun. 2020 Nov 12;11(1):5735. doi: 10.1038/s41467-020-19512-3
  • Félix SS, Laurents DV, Oroz J, et al. Fused in sarcoma undergoes cold denaturation: Implications for phase separation. Protein Sci. 2023 Jan;32(1):e4521 doi: 10.1002/pro.4521
  • Levone BR, Lenzken SC, Antonaci M, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Bio. 2021 May 3;220(5):e202008030. doi: 10.1083/jcb.202008030
  • Fox AH, Lamond AI. Paraspeckles. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000687 doi: 10.1101/cshperspect.a000687
  • Passon DM, Lee M, Rackham O, et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4846–50. doi: 10.1073/pnas.1120792109
  • Fan XJ, Wang YL, Zhao WW, et al. NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK activation. Am J Cancer Res. 2021;11(6):2838–2852.
  • Li S, Li Z, Shu FJ, et al. Double-strand break repair deficiency in NONO knockout murine embryonic fibroblasts and compensation by spontaneous upregulation of the PSPC1 paralog. Nucleic Acids Res. 2014 Sep;42(15):9771–80 doi: 10.1093/nar/gku650
  • Kai M. Roles of RNA-Binding Proteins in DNA Damage Response. Int. J. Mol. Sci. 2016, 17, 310. Int J Mol Sci. 2016;17(4):604–604. doi: 10.3390/ijms17040604
  • Nimonkar AV, Sica RA, Kowalczykowski SC. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3077–82. doi: 10.1073/pnas.0813247106
  • Koike M, Yutoku Y, Koike A. The C-terminal region of Rad52 is essential for Rad52 nuclear and nucleolar localization, and accumulation at DNA damage sites immediately after irradiation. Biochem Biophys Res Commun. 2013 May 31;435(2):260–6. doi: 10.1016/j.bbrc.2013.04.067
  • Kinoshita C, Takizawa Y, Saotome M, et al. The cryo-EM structure of full-length RAD52 protein contains an undecameric ring. FEBS Open Bio. 2023 Jan 27;13(3):408–418. doi: 10.1002/2211-5463.13565
  • Miné-Hattab J, Heltberg M, Villemeur M, et al. Single molecule microscopy reveals key physical features of repair foci in living cells. Elife. 2021 Feb 5;10:e60577. doi: 10.7554/eLife.60577
  • Lisby M, Mortensen UH, Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol. 2003 Jun;5(6):572–7. doi: 10.1038/ncb997
  • Oshidari R, Huang R, Medghalchi M, et al. DNA repair by Rad52 liquid droplets. Nat Commun. 2020 Feb 4;11(1):695. doi: 10.1038/s41467-020-14546-z
  • Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013 Mar 7;49(5):872–83. doi: 10.1016/j.molcel.2013.01.001
  • Chen BR, Sleckman BP. The regulation of DNA end resection by chromatin response to DNA double strand breaks. Front Cell Dev Biol. 2022;10:932633. doi: 10.3389/fcell.2022.932633
  • Zhang L, Geng X, Wang F, et al. 53BP1 regulates heterochromatin through liquid phase separation. Nat Commun. 2022 Jan 18;13(1):360. doi: 10.1038/s41467-022-28019-y
  • Ghodke I, Remisova M, Furst A, et al. AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Mol Cell. 2021 Jun 17;81(12):2596–2610.e7. doi: 10.1016/j.molcel.2021.04.010
  • Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014 Jan;15(1):7–18. doi: 10.1038/nrm3719
  • Piccinno R, Minneker V, Roukos V. 53BP1-DNA repair enters a new liquid phase. EMBO J. 2019 Aug 15;38(16):e102871. doi: 10.15252/embj.2019102871
  • Kilic S, Lezaja A, Gatti M, et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 2019;38(16):e101379. doi: 10.15252/embj.2018101379
  • Tosolini D, Antoniali G, Dalla E, et al. Role of phase partitioning in coordinating DNA damage response: focus on the apurinic apyrimidinic endonuclease 1 interactome. Biomol Concepts. 2020 Dec 23;11(1):209–220. doi: 10.1515/bmc-2020-0019
  • Kieffer SR, Lowndes NF. Immediate-early, early, and late responses to DNA double stranded breaks. Front Genet. 2022;13:793884. doi: 10.3389/fgene.2022.793884
  • Pessina F, Giavazzi F, Yin Y, et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol. 2019 Oct;21(10):1286–1299 doi: 10.1038/s41556-019-0392-4
  • Oda T, Gotoh N, Kasamatsu T, et al. DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif. 2023 Jun;56(6):e13398 doi: 10.1111/cpr.13398
  • Zhang H, Shao S, Sun Y. Characterization of liquid-liquid phase separation using super-resolution and single-molecule imaging. Biophys Rep. 2022 Feb 28;8(1):2–13. doi: 10.52601/bpr.2022.210043
  • Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer. 2022 Apr;22(4):239–252. doi: 10.1038/s41568-022-00444-7
  • Peng Q, Tan S, Xia L, et al. Phase separation in cancer: from the impacts and mechanisms to treatment potentials. Int J Biol Sci. 2022;18(13):5103–5122. doi: 10.7150/ijbs.75410
  • Wei M, Huang X, Liao L, et al. SENP1 decreases RNF168 phase separation to promote DNA damage repair and drug resistance in colon cancer. Cancer Res. 2023 Jun 23;83(17):2908–2923. doi: 10.1158/0008-5472.CAN-22-4017
  • Wei Y, Luo H, Yee PP, et al. Paraspeckle protein NONO promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci. 2021 Dec;8(24):e2102653 doi: 10.1002/advs.202102653