957
Views
0
CrossRef citations to date
0
Altmetric
Review

Nuclear actin filaments – a historical perspective

, , & ORCID Icon
Article: 2320656 | Received 22 Nov 2023, Accepted 14 Feb 2024, Published online: 21 Feb 2024

References

  • Jones KW, Elsdale TR. The effects of actinomycin D on the ultrastructure of the nucleus of the amphibian embryonic cell. J Cell Bio. 1964;21(2):245–13. doi: 10.1083/jcb.21.2.245
  • Jones KW. The induction of paracrystalline thread-complexes in the nuclei of amphibian cells by actinomycin D and other DNA-binding antibiotics. J Ultrastruct Res. 1967;18(1):71–84. doi: 10.1016/S0022-5320(67)80232-6
  • Lane NJ. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J Cell Bio. 1969;40(1):286–91. doi: 10.1083/jcb.40.1.286
  • Clark TG, Merriam RW. Actin in xenopus oocytes. J Cell Bio. 1978;77(2):427–38. doi: 10.1083/jcb.77.2.427
  • Merriam RW, Clark TG. Actin in xenopus oocytes. II. Intracellular distribution and polymerizability. J Cell Bio. 1978;77(2):439–447. doi: 10.1083/jcb.77.2.439
  • Clark TG, Rosenbaum JL. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell. 1979;18(4):1101–1108. doi: 10.1016/0092-8674(79)90223-X
  • Parfenov VN, Galaktionov KI. [Intranuclear actin microfilaments in the oocytes of the common frog]. Tsitologiia. 1987;29(2):142–149.
  • Parfenov VN, Davis DS, Pochukalina GN, et al. Nuclear actin filaments and their topological changes in frog oocytes. Exp Cell Res. 1995;217(2):385–394. doi: 10.1006/excr.1995.1101
  • Krauss SW, Chen C, Penman S, et al. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc Natl Acad Sci U S A. 2003;100(19):10752–7. doi: 10.1073/pnas.1934680100
  • Kiseleva E, Drummond SP, Goldberg MW, et al. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in xenopus oocyte nuclei. J Cell Sci. 2004;117(12):2481–2490. doi: 10.1242/jcs.01098
  • Morozova KN, Kiseleva EV. [Changes in xenopus oocyte nucleus and cytoplasm organization after actin filaments depolymerization by latrunculin]. Tsitologiia. 2008;50(5):394–405.
  • Walther P. High-resolution cryo-SEM allows direct identification of F-actin at the inner nuclear membrane of xenopus oocytes by virtue of its structural features. J Microsc. 2008;232(2):379–85. doi: 10.1111/j.1365-2818.2008.02109.x
  • Bohnsack MT, Stüven T, Kuhn C, et al. A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat Cell Biol. 2006;8(3):257–63. doi: 10.1038/ncb1357
  • Gall JG. Exporting actin. Nat Cell Biol. 2006;8(3):205–7. doi: 10.1038/ncb0306-205
  • Maslova A, Krasikova A. Nuclear actin depolymerization in transcriptionally active avian and amphibian oocytes leads to collapse of intranuclear structures. Nucleus. 2012;3(3):300–11. doi: 10.4161/nucl.20393
  • Feric M, Brangwynne CP. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat Cell Biol. 2013;15(10):1253–9. doi: 10.1038/ncb2830
  • Oda H, Shirai N, Ura N, et al. Chromatin tethering to the nuclear envelope by nuclear actin filaments: a novel role of the actin cytoskeleton in the xenopus blastula. Genes Cells. 2017;22(4):376–391. doi: 10.1111/gtc.12483
  • Mishra S, Levy DL. Nuclear F-actin and Lamin a antagonistically modulate nuclear shape. J Cell Sci. 2022;135(13):135(13. doi: 10.1242/jcs.259692
  • Fukui Y. Intranuclear actin bundles induced by dimethyl sulfoxide in interphase nucleus of dictyostelium. J Cell Bio. 1978;76(1):146–57. doi: 10.1083/jcb.76.1.146
  • Fukui Y, Katsumaru H. Nuclear actin bundles in Amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp Cell Res. 1979;120(2):451–455. doi: 10.1016/0014-4827(79)90412-9
  • Katsumaru H, Fukui Y. In vivo identification of tetrahymena actin probed by DMSO induction of nuclear bundles. Exp Cell Res. 1982;137(2):353–63. doi: 10.1016/0014-4827(82)90036-2
  • Fukui Y, Katsumaru H. Dynamics of nuclear actin bundle induction by dimethyl sulfoxide and factors affecting its development. J Cell Bio. 1980;84(1):131–40. doi: 10.1083/jcb.84.1.131
  • Sanger JW, Gwinn J, Sanger JM. Dissolution of cytoplasmic actin bundles and the induction of nuclear actin bundles by dimethyl sulfoxide. J Exp Zool. 1980;213(2):227–30. doi: 10.1002/jez.1402130210
  • Osborn M, Weber K. Dimethylsulfoxide and the ionophore A23187 affect the arrangement of actin and induce nuclear actin paracrystals in PtK2 cells. Exp Cell Res. 1980;129(1):103–114. doi: 10.1016/0014-4827(80)90335-3
  • Sanger JW, Sanger JM, Jockusch BM. Differential response of three types of actin filament bundles to depletion of cellular ATP levels. Eur J Cell Biol. 1983;31(2):197–204.
  • Sanger JW, Sanger JM, Kreis TE, et al. Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1980;77(9):5268–72. doi: 10.1073/pnas.77.9.5268
  • Welch WJ, Suhan JP. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Bio. 1985;101(4):1198–211. doi: 10.1083/jcb.101.4.1198
  • Iida K, Iida H, Yahara I. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res. 1986;165(1):207–215. doi: 10.1016/0014-4827(86)90545-8
  • Nishida E, Iida K, Yonezawa N, et al. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A. 1987;84(15):5262–6. doi: 10.1073/pnas.84.15.5262
  • Iida K, Matsumoto S, Yahara I, et al. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct Funct. 1992;17(1):39–46. doi: 10.1247/csf.17.39
  • Munsie LN, Desmond CR, Truant R. Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. J Cell Sci. 2012;125(Pt 17):3977–88. doi: 10.1242/jcs.097667
  • Pendleton A, Pope B, Weeds A, et al. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J Biol Chem. 2003;278(16):14394–400. doi: 10.1074/jbc.M206393200
  • Radley JM, Haller CJ. Fate of senescent megakaryocytes in the bone marrow. Br J Haematol. 1983;53(2):277–87. doi: 10.1111/j.1365-2141.1983.00201.x-i1
  • Luchetti F, Burattini S, Ferri P, et al. Actin involvement in apoptotic chromatin changes of hemopoietic cells undergoing hyperthermia. Apoptosis. 2002;7(2):143–52. doi: 10.1023/A:1014362415047
  • Grzanka A, Grzanka D, Orlikowska M. Fluorescence and ultrastructural localization of actin distribution patterns in the nucleus of HL-60 and K-562 cell lines treated with cytostatic drugs. Oncol Rep. 2004;11(4):765–70. doi: 10.3892/or.11.4.765
  • Grzanka D, Kowalczyk AE, Izdebska M, et al. The interactions between SATB1 and F-actin are important for mechanisms of active cell death. Folia Histochem Cytobiol. 2015;53(2):152–61. doi: 10.5603/fhc.a2015.0018
  • Wada A, Fukuda, M, Mishima, M, et al. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J. 1998;17(6):1635–41. doi: 10.1093/emboj/17.6.1635
  • Dopie J, Skarp K-P, Kaisa Rajakylä E, et al. Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci U S A. 2012;109(9):E544–52. doi: 10.1073/pnas.1118880109
  • Stuven T, Hartmann E, Gorlich D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J. 2003;22(21):5928–5940. doi: 10.1093/emboj/cdg565
  • Vartiainen MK, Guettler S, Larijani B, et al. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 2007;316(5832):1749–1752. doi: 10.1126/science.1141084
  • McDonald D, Carrero G, Andrin C, et al. Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Bio. 2006;172(4):541–552. doi: 10.1083/jcb.200507101
  • Skarp KP, Huet G, Vartiainen MK. Steady-state nuclear actin levels are determined by export competent actin pool. Cytoskeleton (Hoboken). 2013;70(10):623–34. doi: 10.1002/cm.21116
  • Johnson MA, Sharma M, Mok MTS, et al. Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress. Biochim Biophys Acta. 2013;1833(10):2334–47. doi: 10.1016/j.bbamcr.2013.06.002
  • Wulfkuhle JD, Donina IE, Stark NH, et al. Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J Cell Sci. 1999;112(Pt 13):2125–2136. doi: 10.1242/jcs.112.13.2125
  • Cameron RS, Liu C, Mixon AS, et al. Myosin16b: the COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil Cytoskeleton. 2007;64(1):19–48. doi: 10.1002/cm.20162
  • Yamazaki S, Gerhold C, Yamamoto K, et al. The Actin-Family Protein Arp4 is a novel suppressor for the formation and functions of nuclear F-Actin. Cells. 2020;9(3):758. doi: 10.3390/cells9030758
  • Holaska JM, Kowalski AK, Wilson KL, et al. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2004;2(9):E231. doi: 10.1371/journal.pbio.0020231
  • Gonsior SM, Platz S, Buchmeier S, et al. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J Cell Sci. 1999;112(Pt 6):797–809. doi: 10.1242/jcs.112.6.797
  • Schoenenberger CA, Buchmeier S, Boerries M, et al. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol. 2005;152(3):157–68. doi: 10.1016/j.jsb.2005.09.003
  • Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5(7):605–7. doi: 10.1038/nmeth.1220
  • Asakura T, Sasaki T, Nagano F, et al. Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene. 1998;16(1):121–130. doi: 10.1038/sj.onc.1201487
  • Belin BJ, Cimini BA, Blackburn EH, et al. Visualization of actin filaments and monomers in somatic cell nuclei. MboC. 2013;24(7):982–994. doi: 10.1091/mbc.e12-09-0685
  • Du J, Fan Y-L, Chen T-L, et al. Lifeact and Utr230 induce distinct actin assemblies in cell nuclei. Cytoskeleton (Hoboken). 2015;72(11):570–5. doi: 10.1002/cm.21262
  • Plessner M, Melak M, Chinchilla P, et al. Nuclear F-actin formation and reorganization upon cell spreading. J Biol Chem. 2015;290(18):11209–16. doi: 10.1074/jbc.M114.627166
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8. doi: 10.1038/363446a0
  • Nagasaki A, Katoh K, Hoshi M, et al. Characterization of phalloidin-negative nuclear actin filaments in U2OS cells expressing cytoplasmic actin-EGFP. Genes Cells. 2022;27(5):317–330. doi: 10.1111/gtc.12930
  • Kokai E, Beck H, Weissbach J, et al. Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins. Histochem Cell Biol. 2014;141(2):123–35. doi: 10.1007/s00418-013-1151-4
  • Kalendova A, Kalasová I, Yamazaki S, et al. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block. Histochem Cell Biol. 2014;142(2):139–52. doi: 10.1007/s00418-014-1243-9
  • Volkman LE. Autographa californica MNPV nucleocapsid assembly: inhibition by cytochalasin D. Virology. 1988;163(2):547–553. doi: 10.1016/0042-6822(88)90295-4
  • Charlton CA, Volkman LE. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J Virol. 1991;65(3):1219–27. doi: 10.1128/jvi.65.3.1219-1227.1991
  • Ohkawa T, Volkman LE. Nuclear F-actin is required for AcMNPV nucleocapsid morphogenesis. Virology. 1999;264(1):1–4. doi: 10.1006/viro.1999.0008
  • Wang Q, Liang C, Song J, et al. HA2 from the helicoverpa armigera nucleopolyhedrovirus: a WASP-related protein that activates Arp2/3-induced actin filament formation. Virus Res. 2007;127(1):81–7. doi: 10.1016/j.virusres.2007.03.021
  • Li K, Wang Y, Bai H, et al. The putative pocket protein binding site of autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization. J Virol. 2010;84(15):7857–68. doi: 10.1128/JVI.00174-10
  • Marek M, Merten O-W, Galibert L, et al. Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J Virol. 2011;85(11):5350–62. doi: 10.1128/JVI.00035-11
  • Fu Y, Lin T, Liang A, et al. Effects of recombinant baculovirus AcMNPV-BmK IT on the formation of early cables and nuclear polymerization of actin in Sf9 cells. Cytotechnology. 2016;68(3):381–7. doi: 10.1007/s10616-014-9789-x
  • Forest T, Barnard S, Baines JD. Active intranuclear movement of herpesvirus capsids. Nat Cell Biol. 2005;7(4):429–31. doi: 10.1038/ncb1243
  • Feierbach B, Piccinotti S, Bisher M, et al. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLOS Pathog. 2006;2(8):e85. doi: 10.1371/journal.ppat.0020085
  • Bosse JB, Virding S, Thiberge SY, et al. Nuclear herpesvirus capsid motility is not dependent on F-actin. MBio. 2014;5(5):e01909–14. doi: 10.1128/mBio.01909-14
  • Wilkie AR, Lawler JL, Coen DM, et al. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress. MBio. 2016;7(4). doi: 10.1128/mBio.01254-16
  • Levy A, Zheng JY, Lazarowitz SG. The tobamovirus turnip vein clearing virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection. J Virol. 2013;87(11):6428–40. doi: 10.1128/JVI.03390-12
  • Haskin CL, Athanasiou KA, Klebe R, et al. A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells. Biochem Cell Biol. 1993;71(7–8):361–71. doi: 10.1139/o93-054
  • Sameshima M, Kishi Y, Osumi M, et al. Novel actin cytoskeleton: actin tubules. Cell Struct Funct. 2000;25(5):291–295. doi: 10.1247/csf.25.291
  • Lenart P, Bacher CP, Daigle N, et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature. 2005;436(7052):812–8. doi: 10.1038/nature03810
  • Baarlink C, Plessner M, Sherrard A, et al. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol. 2017;19(12):1389–1399. doi: 10.1038/ncb3641
  • Krippner S, Winkelmeier J, Knerr J, et al. Postmitotic expansion of cell nuclei requires nuclear actin filament bundling by α-actinin 4. EMBO Rep. 2020;21(11):e50758. doi: 10.15252/embr.202050758
  • Liu C, Zhu R, Mao Y. Nuclear actin polymerized by mDia2 confines centromere movement during CENP-A loading. iScience. 2018;9:314–327. doi: 10.1016/j.isci.2018.10.031
  • Oda H, Sato Y, Kawashima SA, et al. Actin filaments accumulated in the nucleus remain in the vicinity of condensing chromosomes in the zebrafish early embryo. Biol Open. 2023;12(5). doi: 10.1242/bio.059783
  • Philimonenko VV, Zhao J, Iben S, et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol. 2004;6(12):1165–72. doi: 10.1038/ncb1190
  • Hu P, Wu S, Hernandez N. A role for beta-actin in RNA polymerase III transcription. Genes Dev. 2004;18(24):3010–3015. doi: 10.1101/gad.1250804
  • Kukalev A, Nord Y, Palmberg C, et al. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol. 2005;12(3):238–44. doi: 10.1038/nsmb904
  • Percipalle P, Fomproix N, Kylberg K, et al. An actin–ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc Natl Acad Sci U S A. 2003;100(11):6475–6480. doi: 10.1073/pnas.1131933100
  • Ye J, Zhao J, Hoffmann-Rohrer U, et al. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 2008;22(3):322–30. doi: 10.1101/gad.455908
  • Miyamoto K, Pasque V, Jullien J, et al. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev. 2011;25(9):946–58. doi: 10.1101/gad.615211
  • Miyamoto K, Teperek M, Yusa K, et al. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science. 2013;341(6149):1002–1005. doi: 10.1126/science.1240376
  • Shindo T, Ihashi S, Sakamoto Y, et al. Visualization of endogenous nuclear F-actin in mouse embryos reveals abnormal actin assembly after somatic cell nuclear transfer. J Biochem. 2021;169(3):303–311. doi: 10.1093/jb/mvaa125
  • Baarlink C, Wang H, Grosse R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science. 2013;340(6134):864–867. doi: 10.1126/science.1235038
  • Wang Y, Sherrard A, Zhao B, et al. GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics. Nat Commun. 2019;10(1):5271. doi: 10.1038/s41467-019-13322-y
  • Safaralizade M, Fuderer R, Grosse R, et al. Measuring nuclear calcium and actin assembly in living cells. J Biochem. 2021;169(3):287–294. doi: 10.1093/jb/mvab002
  • Wei M, Fan X, Ding M, et al. Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering. Sci Adv. 2020;6(16):eaay6515. doi: 10.1126/sciadv.aay6515
  • Lundquist MR, Storaska A, Liu T-C, et al. Redox modification of nuclear actin by MICAL-2 regulates SRF signaling. Cell. 2014;156(3):563–576. doi: 10.1016/j.cell.2013.12.035
  • Chatzifrangkeskou M, Pefani D-E, Eyres M, et al. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J. 2019;38(16):e101168. doi: 10.15252/embj.2018101168
  • Serebryannyy LA, Parilla M, Annibale P, et al. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci. 2016;129(18):3412–25. doi: 10.1242/jcs.195867
  • Serebryannyy LA, Yuen M, Parilla M, et al. The effects of disease models of nuclear actin polymerization on the nucleus. Front Physiol. 2016;7:454. doi: 10.3389/fphys.2016.00454
  • Tsopoulidis N, Kaw S, Laketa V, et al. T cell receptor–triggered nuclear actin network formation drives CD4 + T cell effector functions. Sci Immunol. 2019;4(31):4(31. doi: 10.1126/sciimmunol.aav1987
  • Yamazaki S, Yamamoto K, de Lanerolle P, et al. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin. Histochem Cell Biol. 2016;145(4):389–399. doi: 10.1007/s00418-016-1416-9
  • Rando OJ, Zhao K, Janmey P, et al. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci U S A. 2002;99(5):2824–9. doi: 10.1073/pnas.032662899
  • Chang L, Azzolin L, Di Biagio D, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018;563(7730):265–269. doi: 10.1038/s41586-018-0658-1
  • Huang Q, Wu D, Zhao J, et al. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis. EMBO J. 2022;41(11):e110324. doi: 10.15252/embj.2021110324
  • Wang A, Kolhe JA, Gioacchini N, et al. Mechanism of long-range chromosome motion triggered by gene activation. Dev Cell. 2020;52(3):309–320 e5. doi: 10.1016/j.devcel.2019.12.007
  • Chuang CH, Carpenter AE, Fuchsova B, et al. Long-range directional movement of an interphase chromosome site. Curr Biol. 2006;16(8):825–31. doi: 10.1016/j.cub.2006.03.059
  • Dundr M, Ospina JK, Sung M-H, et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Bio. 2007;179(6):1095–103. doi: 10.1083/jcb.200710058
  • Khanna N, Hu Y, Belmont AS. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr Biol. 2014;24(10):1138–44. doi: 10.1016/j.cub.2014.03.053
  • Ueyama H, Nakayasu H, Ueda K. Nuclear actin and transport of RNA. Cell Biol Int Rep. 1987;11(9):671–677. doi: 10.1016/0309-1651(87)90102-0
  • Schroder HC, Trölltsch D, WENGER R, et al. Cytochalasin B selectively releases ovalbumin mRNA precursors but not the mature ovalbumin mRNA from hen oviduct nuclear matrix. Eur J Biochem. 1987;167(2):239–45. doi: 10.1111/j.1432-1033.1987.tb13329.x
  • Lee YJ, Sheu TJ, Keng PC. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin. Biochem Biophys Res Commun. 2005;335(2):286–91. doi: 10.1016/j.bbrc.2005.07.073
  • Andrin C, McDonald D, Attwood KM, et al. A requirement for polymerized actin in DNA double-strand break repair. Nucleus. 2012;3(4):384–95. doi: 10.4161/nucl.21055
  • Belin BJ, Lee T, Mullins RD. DNA damage induces nuclear actin filament assembly by formin -2 and spire-(1/2) that promotes efficient DNA repair. [corrected]. Elife. 2015;4:e07735. doi: 10.7554/eLife.07735
  • Sun MH, Yang M, Xie F-Y, et al. DNA double-strand breaks induce the nuclear actin filaments formation in Cumulus-Enclosed Oocytes but not in denuded Oocytes. PloS One. 2017;12(1):e0170308. doi: 10.1371/journal.pone.0170308
  • Caridi CP, D’Agostino C, Ryu T, et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559(7712):54–60. doi: 10.1038/s41586-018-0242-8
  • Schrank BR, Aparicio T, Li Y, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559(7712):61–66. doi: 10.1038/s41586-018-0237-5
  • Lamm N, Read MN, Nobis M, et al. Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol. 2020;22(12):1460–1470. doi: 10.1038/s41556-020-00605-6
  • Cobb AM, De Silva SA, Hayward R, et al. Filamentous nuclear actin regulation of PML NBs during the DNA damage response is deregulated by prelamin a. Cell Death Dis. 2022;13(12):1042. doi: 10.1038/s41419-022-05491-4
  • Debaugnies M, Rodríguez-Acebes S, Blondeau J, et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature. 2023;616(7955):168–175. doi: 10.1038/s41586-023-05838-7
  • Palumbieri MD, Merigliano C, Gonzalez-Acosta D, et al. Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity. Nat Commun. 2023;14(1) 7819. doi: 10.1038/s41467-023-43183-5