1,040
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Clinical significance of serum CDC42 in the prediction of uremic vascular calcification incidence and progression

, , , , , , & show all
Article: 2194100 | Received 30 Dec 2022, Accepted 19 Mar 2023, Published online: 29 Mar 2023

References

  • Ammirati AL. Chronic kidney disease. Rev Assoc Med Bras. 2020;66(Suppl 1):s03–10. 10.1590/1806-9282.66.s1.3. 1992.
  • Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol. 2019;15(5):301–316.
  • Almeras C, Argiles A. The general picture of uremia. Semin Dial. 2009;22(4):329–333.
  • Lee SJ, Lee IK, Jeon JH. Vascular calcification—New insights into its mechanism. Int J Mol Sci. 2020;21(8):2685.
  • Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010;411(19–20):1412–1420.
  • Brunet P, Gondouin B, Duval-Sabatier A, et al. Does uremia cause vascular dysfunction? Kidney Blood Press Res. 2011;34(4):284–290. DOI:10.1159/000327131
  • Cozzolino M, Ciceri P. Ectopic calcification in Uremia: where do we stand? Blood Purif. 2020;49(6):641–642.
  • Steichen C, Herve JC, Hauet T, et al. Rho GTPases in kidney physiology and diseases. Small GTPases. 2021;13:1–21.
  • Melendez J, Grogg M, Zheng Y. Signaling role of Cdc42 in regulating mammalian physiology. J Biol Chem. 2011;286(4):2375–2381.
  • Hercyk BS, Das ME. F-BAR Cdc15 promotes Cdc42 activation during cytokinesis and cell polarization in schizosaccharomyces pombe. Genetics. 2019;213(4):1341–1356.
  • Farhan H, Hsu VW. Cdc42 and cellular polarity: emerging roles at the golgi. Trends Cell Biol. 2016;26(4):241–248.
  • Andrews MG, Subramanian L, Kriegstein AR. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. Elife. 2020;9. DOI:10.7554/eLife.58737
  • Yoshida Y, Yamada A, Akimoto Y, et al. Cdc42 has important roles in postnatal angiogenesis and vasculature formation. Dev Biol. 2021;477 64–69.
  • Elias BC, Das A, Parekh DV, et al. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J Cell Sci. 2015;128(23):4293–4305. DOI:10.1242/jcs.164509
  • Baek JI, Kwon SH, Zuo X, et al. Dynamin binding protein (Tuba) deficiency inhibits ciliogenesis and nephrogenesis in vitro and in vivo. J Biol Chem. 2016;291(16):8632–8643. DOI:10.1074/jbc.M115.688663
  • Ikehata M, Yamada A, Fujita K, et al. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation. Biochem Biophys Res Commun. 2018;500(3):525–529. DOI:10.1016/j.bbrc.2018.04.032
  • Li Z, Wu J, Zhang X, et al. CDC42 promotes vascular calcification in chronic kidney disease. J Pathol. 2019;249(4):461–471. DOI:10.1002/path.5334
  • Al-Aly Z. Vascular calcification in uremia: what is new and where are we going? Adv Chronic Kidney Dis. 2008;15(4):413–419.
  • Ateya AM, Sabri NA, El Hakim I, et al. Effect of omega-3 fatty acids on serum lipid profile and oxidative stress in pediatric patients on regular hemodialysis: a randomized placebo-controlled study. J Ren Nutr. 2017;27(3):169–174. DOI:10.1053/j.jrn.2016.11.005
  • Alshahawey M, El Borolossy R, El Wakeel L, et al. The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: a randomized placebo controlled study. Nutr Metab Cardiovasc Dis. 2021;31(2):626–633. DOI:10.1016/j.numecd.2020.09.014
  • Alshahawey M, Shahin SM, Elsaid TW, et al. Effect of febuxostat on the endothelial dysfunction in hemodialysis patients: a randomized, placebo-controlled, double-blinded study. Am J Nephrol. 2017;45(5):452–459. DOI:10.1159/000471893
  • Alshahawey M, Shaheen SM, Elsaid T, et al. Effect of febuxostat on oxidative stress in hemodialysis patients with endothelial dysfunction: a randomized, placebo-controlled, double-blinded study. Int Urol Nephrol. 2019;51(9):1649–1657. DOI:10.1007/s11255-019-02243-w
  • Shekarabi M, Kennedy TE. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci. 2002;19(1):1–17.
  • Li L, Xu L, Wen S, et al. The effect of lncRNA-ARAP1-AS2/ARAP1 on high glucose-induced cytoskeleton rearrangement and epithelial-mesenchymal transition in human renal tubular epithelial cells. J Cell Physiol. 2020;235(7–8):5787–5795. DOI:10.1002/jcp.29512
  • Blattner SM, Hodgin JB, Nishio M, et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int. 2013;84(5):920–930. DOI:10.1038/ki.2013.175
  • Flentje A, Kalsi R, Monahan TS. Small GTPases and their role in vascular disease. Int J Mol Sci. 2019;20(4):917.
  • Lv J, Zeng J, Guo F, et al. Endothelial Cdc42 deficiency impairs endothelial regeneration and vascular repair after inflammatory vascular injury. Respir Res. 2018;19(1):27. DOI:10.1186/s12931-018-0729-8
  • Yang P, Troncone L, Augur ZM, et al. The role of bone morphogenetic protein signaling in vascular calcification. Bone. 2020;141:115542.
  • Suzuki W, Yamada A, Aizawa R, et al. Cdc42 is critical for cartilage development during endochondral ossification. Endocrinology. 2015;156(1):314–322. DOI:10.1210/en.2014-1032
  • Kuczera P, Adamczak M, Wiecek A. Fibroblast growth factor-23—A potential uremic toxin. Toxins (Basel). 2016;8(12):369.
  • Gianella FG, Prado VE, Poindexter JR, et al. Spot urinary citrate-to-creatinine ratio is a marker for acid-base status in chronic kidney disease. Kidney Int. 2021;99(1):208–217. DOI:10.1016/j.kint.2020.07.006
  • Bertholet-Thomas A, Portefaix A, Flammier S, et al. Fluconazole in hypercalciuric patients with increased 1,25(OH)2D levels: the prospective, randomized, placebo-controlled, double-blind FLUCOLITH trial. Trials. 2022;23(1):499. DOI:10.1186/s13063-022-06302-z
  • Zonoozi S, Ramsay SE, Papacosta O, et al. Chronic kidney disease, cardiovascular risk markers and total mortality in older men: cystatin C versus creatinine. J Epidemiol Community Health. 2019;73(7):645–651. DOI:10.1136/jech-2018-211719
  • Asif AA, Hussain H, Chatterjee T. Extraordinary creatinine level: a case report. Cureus. 2020;12(7):e9076.
  • Kim IY, Ye BM, Kim MJ, et al. 1,25-dihydroxyvitamin D deficiency is independently associated with cardiac valve calcification in patients with chronic kidney disease. Sci Rep. 2022;12(1):915. DOI:10.1038/s41598-022-04981-x
  • Fernandez P, Douthat W, Castellano M, et al. Biomarkers of bone and mineral disorders (FGF-23, fetuin-A) and vascular calcification scores as predictive tools for cardiovascular death in dialysis patients, at 10 years of follow-up. Med (B Aires). 2021;81(2):191–197.
  • Clemente A, Traghella I, Mazzone A, et al. Vascular and valvular calcification biomarkers. Adv Clin Chem. 2020;95(73–103.
  • Liu X, Wu P, Zhang H, et al. MicroRNA-211-5p as a biomarker in early detection of uremic vascular calcification among patients with end-stage renal disease. Arch Esp Urol. 2022;75(8):714–719. DOI:10.56434/j.arch.esp.urol.20227508.103
  • Morena M, Dupuy AM, Jaussent I, et al. A cut-off value of plasma osteoprotegerin level may predict the presence of coronary artery calcifications in chronic kidney disease patients. Nephrol Dial Transplant. 2009;24(11):3389–3397. DOI:10.1093/ndt/gfp301