899
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Potential use of endemic human coronaviruses to stimulate immunity against pathogenic SARS-CoV-2 and its variants

, , &
Article: 2209949 | Received 16 Jan 2023, Accepted 30 Apr 2023, Published online: 15 May 2023

References

  • Chinese SMEC. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303(5664):1666–15.
  • Corman VM, Muth D, Niemeyer D, et al. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018;100:163–188. DOI:10.1016/bs.aivir.2018.01.001
  • Kesheh MM, Hosseini P, Soltani S, et al. An overview on the seven pathogenic human coronaviruses. Rev Med Virol. 2022;32(2):e2282. DOI:10.1002/rmv.2282
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–192.
  • Cimolai N. Complicating infections associated with common endemic human respiratory coronaviruses. Health Secur. 2021;19(2):195–208.
  • Ogimi C, Kim YJ, Martin ET, et al. What’s new with the old coronaviruses? J Pediatric Infect Dis Soc. 2020;9(2):210–217. DOI:10.1093/jpids/piaa037
  • Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): a lesson from animal coronaviruses. Vet Microbiol. 2020;244:108693.
  • Gagneur A, Sizun J, Vallet S, et al. Coronavirus-related nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: a prospective study. J Hosp Infect. 2002;51(1):59–64. DOI:10.1053/jhin.2002.1179
  • Sealy RE, Hurwitz JL. Cross-reactive immune responses toward the common cold human coronaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): mini-review and a murine study. Microorganisms. 2021;9(8). DOI:10.3390/microorganisms9081643
  • Frutos AM, Kubale J, Kuan G, et al. SARS-CoV-2 and endemic coronaviruses: comparing symptom presentation and severity of symptomatic illness among Nicaraguan children. PLOS Glob Public Health. 2022;2(5):e0000414. DOI:10.1371/journal.pgph.0000414
  • Wang J, Young BE, Li D, et al. Broad cross-reactive IgA and IgG against human coronaviruses in milk induced by COVID-19 vaccination and infection. Vaccines. 2022;10(6):980. DOI:10.3390/vaccines10060980
  • Schulien I, Kemming J, Oberhardt V, et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nature Med. 2021;27(1):78–85. DOI:10.1038/s41591-020-01143-2
  • Shrwani K, Sharma R, Krishnan M, et al. Detection of serum cross-reactive antibodies and memory response to SARS-CoV-2 in prepandemic and post–COVID-19 convalescent samples. J Infect Dis. 2021;224(8):1305–1315. DOI:10.1093/infdis/jiab333
  • Woldemeskel BA, Kwaa AK, Garliss CC, et al. Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. J Clin Investig. 2020;130(12):6631–6638. DOI:10.1172/JCI143120
  • Demers-Mathieu V, DaPra C, Mathijssen G, et al. Human milk antibodies against S1 and S2 subunits from SARS-CoV-2, HCoV-OC43, and HCoV-229E in mothers with a confirmed COVID-19 PCR, viral symptoms, and unexposed mothers. Int J Mol Sci. 2021;22(4):1749. DOI:10.3390/ijms22041749
  • Yu ED, Narowski TM, Wang E, et al. Immunological memory to common cold coronaviruses assessed longitudinally over a three-year period pre-COVID19 pandemic. Cell Host Microbe. 2022;30(9):1269–1278. DOI:10.1016/j.chom.2022.07.012
  • Lin C-Y, Wolf J, Brice DC, et al. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host & Microbe. 2022;30(1):83–96. e4. DOI:10.1016/j.chom.2021.12.005
  • Sagar M, Reifler K, Rossi M, et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J Clin Investig. 2021;131(1):e143380. DOI:10.1172/JCI143380.
  • Schmidt KG, Nganou-Makamdop K, Tenbusch M, et al. SARS-CoV-2-seronegative subjects target CTL epitopes in the SARS-CoV-2 nucleoprotein cross-reactive to common cold coronaviruses. Front Immunol. 2021;12:627568.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. DOI:10.1007/978-1-4939-2438-7_1
  • Nunes MC, Johnson MJ, Kwatra G, et al. T-cell responses to SARS-CoV-2 in unexposed South African women. Gates Open Res. 2021;5(150):150. DOI:10.12688/gatesopenres.13373.1
  • Auerswald H, Eng CC, Lay S, et al. Rapid generation of in-house serological assays is comparable to commercial kits critical for early response to pandemics: a case with SARS-CoV-2. Front Med (Lausanne). 2022;9:864972. DOI:10.3389/fmed.2022.864972
  • Pushpakumara PD, Madhusanka D, Dhanasekara S, et al. Identification of novel candidate CD8+ T cell epitopes of the SARS-CoV2 with homology to other seasonal coronaviruses. Viruses. 2021;13(6):972. DOI:10.3390/v13060972
  • Wang J, Li D, Zhou Q, et al. Antibody mediated immunity to SARS-CoV-2 and human coronaviruses: multiplex beads assay and volumetric absorptive microsampling to generate immune repertoire cartography. Front Immunol. 2021;12:2681.
  • Khan T, Rahman M, Ali FA, et al. Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight. 2021;6(4):e144499. DOI:10.1172/jci.insight.144499
  • Patel RS, Agrawal B. Heterologous immunity induced by 1st generation COVID-19 vaccines and its role in developing a pan-coronavirus vaccine. Front Immunol. 2022;13. DOI:10.3389/fimmu.2022.952229
  • Jackson-Thompson BM, Goguet E, Laing ED, et al. Prospective Assessment of SARS-CoV-2 Seroconversion (PASS) study: an observational cohort study of SARS-CoV-2 infection and vaccination in healthcare workers. BMC Infect Dis. 2021;21(1):1–15. DOI:10.1186/s12879-021-06233-1
  • Hua X, Vijay R, Channappanavar R, et al. Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. JCI Insight. 2018;3(11):e99025. DOI:10.1172/jci.insight.99025.
  • Everest H, Stevenson-Leggett P, Bailey D, et al. Known cellular and receptor interactions of animal and human coronaviruses: a review. Viruses. 2022;14(2):351. DOI:10.3390/v14020351
  • Hartenian E, Nandakumar D, Lari A, et al. The molecular virology of coronaviruses. J Biol Chem. 2020;295(37):12910–12934. DOI:10.1074/jbc.REV120.013930
  • Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon. 2020;6(8):e04743.
  • Kayode AJ, Banji-Onisile FO, Olaniran AO, et al. An overview of the pathogenesis, transmission, diagnosis, and management of endemic human coronaviruses: a reflection on the past and present episodes and possible future outbreaks. Pathogens. 2021;10(9):1108. DOI:10.3390/pathogens10091108
  • Crowley AR, Natarajan H, Hederman AP, et al. Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection but not vaccination with stabilized spike. Elife. 2022;11:11.
  • V’kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Rev Microbiol. 2021;19(3):155–170. DOI:10.1038/s41579-020-00468-6
  • Wong NA, Saier MH. The SARS-coronavirus infection cycle: a survey of viral membrane proteins, their functional interactions and pathogenesis. Int J Mol Sci. 2021;22(3):1308.
  • Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev. 2021;45(3):fuaa057.
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021;49(D1):D437–451. DOI:10.1093/nar/gkaa1038
  • Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165878. DOI:10.1016/j.bbadis.2020.165878
  • Zhang W, Zheng Q, Yan M, et al. Structural characterization of the HCoV-229E fusion core. Biochem Biophys Res Commun. 2018;497(2):705–712. DOI:10.1016/j.bbrc.2018.02.136
  • Stoddard CI, Sung K, Ojee E, et al. Distinct antibody responses to endemic coronaviruses pre-and post-SARS-CoV-2 infection in Kenyan infants and mothers. Viruses. 2022;14(7):1517. DOI:10.3390/v14071517
  • Tso FY, Lidenge SJ, Peña PB, et al. High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Inter J Infect Dis. 2021;102:577–583. DOI:10.1016/j.ijid.2020.10.104
  • Walls AC, Park Y-J, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292. e6. DOI:10.1016/j.cell.2020.02.058
  • Khan S, Nakajima R, Jain A, et al. Analysis of serologic cross-reactivity between common human coronaviruses and SARS-CoV-2 using coronavirus antigen microarray. bioRxiv. 2020. DOI:10.1101/2020.03.24.006544
  • Mveang Nzoghe A, Essone PN, Leboueny M, et al. Evidence and implications of pre‐existing humoral cross‐reactive immunity to SARS‐CoV‐2. Immunity. Immun Inflamm Dis. 2021;9(1):128–133. DOI:10.1002/iid3.367
  • Li M-Y, Li L, Zhang Y, et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Diseases Poverty. 2020;9(1):23–29. DOI:10.1186/s40249-020-00662-x
  • Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinl Infect Dis. 2020;71(15):778–785. DOI:10.1093/cid/ciaa310
  • Poh CM, Carissimo G, Wang B, et al. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun. 2020;11(1):1–7. DOI:10.1038/s41467-020-16638-2
  • Walls AC, Xiong X, Park Y-J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell. 2019;176(5):1026–1039. e15. DOI:10.1016/j.cell.2018.12.028
  • Shrock E, Fujimura E, Kula T, et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 2020;370(6520):eabd4250. DOI:10.1126/science.abd4250
  • Nguyen-Contant P, Embong AK, Kanagaiah P, et al. S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio. 2020;11(5):e01991. DOI:10.1128/mBio.01991-20
  • Dalakas MC, Bitzogli K, Alexopoulos H. Anti-SARS-CoV-2 antibodies within IVIg preparations: cross-reactivities with seasonal coronaviruses, natural autoimmunity, and therapeutic implications. Front Immunol. 2021;12:627285.
  • Rey FA, Lok S-M. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell. 2018;172(6):1319–1334.
  • Tajuelo A, López-Siles M, Más V, et al. Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins. Int J Mol Sci. 2022;23(6):2977. DOI:10.3390/ijms23062977
  • Becerra-Artiles A, Calvo-Calle JM, Nanaware P, et al. Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved across human coronaviruses and presented by common HLA alleles. Cell Rep. 2022;39(11):110952. DOI:10.1016/j.celrep.2022.110952
  • Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Investig. 2020;130(6):2757–2765. DOI:10.1172/JCI138745
  • Buckley PR, Lee CH, Pereira Pinho M, et al. HLA-dependent variation in SARS-CoV-2 CD8 +T cell cross-reactivity with human coronaviruses. Immunology. 2022;166(1):78–103. DOI:10.1111/imm.13451
  • Rha M-S, Kim AR, Shin E-C. SARS-CoV-2-specific T cell responses in patients with COVID-19 and unexposed individuals. Immune Netw. 2021;21(1). DOI:10.4110/in.2021.21.e2
  • Echeverría G, Guevara Á, Coloma J, et al. Pre-existing T-cell immunity to SARS-CoV-2 in unexposed healthy controls in Ecuador, as detected with a COVID-19 Interferon-Gamma Release Assay. Inter J Infect Dis. 2021;105:21–25. DOI:10.1016/j.ijid.2021.02.034
  • Laurén I, Havervall S, Ng H, et al. Long‐term SARS‐CoV‐2‐specific and cross‐reactive cellular immune responses correlate with humoral responses, disease severity, and symptomatology. Immun Inflamm Dis. 2022;10(4):e595. DOI:10.1002/iid3.595
  • Doty RL. Olfactory dysfunction in COVID-19: pathology and long-term implications for brain health. Trends Mol Med. 2022;28(9):781–794.
  • Haake C, Cook S, Pusterla N, et al. Coronavirus infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses. 2020;12(9):1023. DOI:10.3390/v12091023
  • Bagasra O, Pandey P, Sanamandra JR, et al. Infectivity of human olfactory neurons to SARS-CoV-2: a link to anosmia. Oman Med J. 2021;36(5):e307. DOI:10.5001/omj.2021.128
  • Rea IM, Alexander HD. Triple jeopardy in ageing: cOVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev. 2022;73:101494.
  • Dijkman R, Jebbink MF, Gaunt E, et al. The dominance of human coronavirus OC43 and NL63 infections in infants. J Clin Virol. 2012;53(2):135–139. DOI:10.1016/j.jcv.2011.11.011
  • Dijkman R, Jebbink MF, El Idrissi NB, et al. Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol. 2008;46(7):2368–2373. DOI:10.1128/JCM.00533-08
  • Nelde A, Bilich T, Heitmann JS, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2021;22(1):74–85. DOI:10.1038/s41590-020-00808-x
  • Saletti G, Gerlach T, Jansen JM, et al. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci Rep. 2020;10(1):21447. DOI:10.1038/s41598-020-78506-9
  • Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol. 2020;20(8):457–458.
  • Braun J, Loyal L, Frentsch M, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270–274. DOI:10.1038/s41586-020-2598-9
  • Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457–462. DOI:10.1038/s41586-020-2550-z
  • Mateus J, Grifoni A, Tarke A, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370(6512):89–94. DOI:10.1126/science.abd3871
  • Doshi P. Covid-19: do many people have pre-existing immunity? BMJ. 2020;370. DOI:10.1136/bmj.m3563
  • Gaunt ER, Hardie A, Claas EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940–2947. DOI:10.1128/JCM.00636-10
  • Zimmermann P, Curtis N. Why Does the Severity of COVID-19 Differ with Age?: understanding the mechanisms underlying the age gradient in outcome following SARS-CoV-2 Infection. Pediatr Infect Dis J. 2022;41(2):e36.
  • Kaushal J, Mahajan P. Asia’s largest urban slum-Dharavi: a global model for management of COVID-19. Cities. 2021;111:103097.
  • McNeil W. Plaques and People. 1976 Garden City New York: Anchor.
  • BBC News. The Islamic veil across Europe. 31 May 2018. https://www.bbc.com/news/world-europe-13038095
  • Welle D, Where are ‘burqa bans’ in Europe? 1 August 2019. https://www.dw.com/en/where-are-burqa-bans-in-europe/a-49843292
  • Quang Tran T, Mahmoud Mostafa E, Mohamed G, et al. Tawfik efficacy of face masks against respiratory infectious diseases: a systematic review and network analysis of randomized-controlled trials. J Breath Res. 2021 Sep 13;15(4):047102. DOI:10.1088/1752-7163/ac1ea5
  • Jeremy Howard H, Huang A, Zhiyuan L, et al. An evidence review of face masks against COVID-19. Proc Natl Acad Sci U S A. 2021 Jan 26;118(4):e2014564118. DOI:10.1073/pnas.2014564118
  • Lam J-Y, Ng YY, Yuen CK, et al. A nasal omicron vaccine booster elicits potent neutralizing antibody response against emerging SARS-CoV-2 variants. Emerg Microbes Infect. 2022;11(1):964–967. DOI:10.1080/22221751.2022.2053365
  • Dhama K, Dhawan M, Tiwari R, et al. COVID-19 intranasal vaccines: current progress, advantages, pro spects, and challenges. Human Vaccines & Immunotherapeutics. 2022;18(5):2045853. DOI:10.1080/21645515.2022.2045853