570
Views
0
CrossRef citations to date
0
Altmetric
Breast

Prognostic value of glucose transporter proteins-1 (GLUT1) in breast carcinoma

, , & ORCID Icon
Article: 2283953 | Received 24 Aug 2023, Accepted 12 Nov 2023, Published online: 21 Nov 2023

References

  • Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: 10.1259/bjr.20211033
  • Kingdom of Saudi Arabia Saudi health council national information health center. cancer incidence report 2017.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clinicians. 2021;71(3):209–7. doi: 10.3322/caac.21660
  • Althubiti MA, Eldein MMN. Trends in the incidence and mortality of cancer in Saudi arabia. Saudi Med J. 2018;39(12):1259. doi: 10.15537/smj.2018.12.23348
  • Zekri J, Saadeddin A, Alharbi H. Frequency and clinical characteristics of HER2 over-expressed breast cancer in Saudi Arabia: a retrospective study. BMC Womens Health. 2021;21(1):1–10. doi: 10.1186/s12905-020-01159-3
  • Alqahtani WS, Almufareh NA, Domiaty DM, et al. Epidemiology of cancer in Saudi Arabia thru 2010–2019: a systematic review with constrained meta-analysis. AIMS Public Health. 2020;7(3):679. doi: 10.3934/publichealth.2020053
  • Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786–3788. doi: 10.1172/JCI60534
  • Zeng K, Ju G, Wang H, et al. GLUT1/3/4 as novel biomarkers for the prognosis of human breast cancer. Transl Cancer Res. 2020;9(4):2363. doi: 10.21037/tcr.2020.03.50
  • El-Harith EA, Abdel-Hadi MS, Steinmann D, et al. BRCA1 and BRCA2 mutations in breast cancer patients from Saudi arabia. Saudi Med J. 2002;23(6):700–704.
  • Hasan TN, Shafi G, Syed NA, et al. Lack of association of BRCA1 and BRCA2 variants with breast cancer in an ethnic population of Saudi Arabia, an emerging high-risk area. Asian Pac J Cancer Prev. 2013;14(10):5671–5674. doi: 10.7314/apjcp.2013.14.10.5671
  • Warsy AS, Al-Jaser MH, Albdass A, et al. Is consanguinity prevalence decreasing in Saudis?: a study in two generations. Afr Health Sci. 2014;14(2):314–321. doi: 10.4314/ahs.v14i2.5
  • AlHarthi FS, Qari A, Edress A, et al. Familial/Inherited cancer syndrome: a focus on the highly consanguineous Arab population. NPJ Genom Med 2020;5. 3-y. eCollection 2020 10.1038/s41525-019-0110-y
  • Abu-Elmagd M, Assidi M, Schulten H, et al. Individualized medicine enabled by genomics in Saudi arabia. BMC Med Genomics. 2015 [Epub 2015 Jan 15];8(Suppl 1):S3–S3. doi: 10.1186/1755-8794-8-S1-S3
  • Bansal C, Sharma A, Pujani M, et al. Correlation of hormone receptor and human epidermal growth factor receptor-2/neu expression in breast cancer with various clinicopathologic factors. Indian J Med Paediatr Oncol. 2017;38(4):483–489. doi: 10.4103/ijmpo.ijmpo_98_16
  • Parise CA, Bauer KR, Brown MM, et al. Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J. 2009;15(6):593–602. doi: 10.1111/j.1524-4741.2009.00822.x
  • Collignon J, Lousberg L, Schroeder H, et al. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer: Target Therapy. 2016;93–107. doi: 10.2147/BCTT.S69488
  • Zhang C, Wang S, Israel HP, et al. Higher locoregional recurrence rate for triple-negative breast cancer following neoadjuvant chemotherapy, surgery and radiotherapy. Springerplus. 2015;4(1):1–9. doi: 10.1186/s40064-015-1116-2
  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314. doi: 10.1126/science.123.3191.309
  • Chiche J, Brahimi‐Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14(4):771–794. doi: 10.1111/j.1582-4934.2009.00994.x
  • Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflügers Archiv. 2004;447(5):480–489. doi: 10.1007/s00424-003-1085-0
  • Kallinowski F, Schlenger KH, Runkel S, et al. Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res. 1989;49(14):3759–3764.
  • Carvalho KC, Cunha IW, Rocha RM, et al. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics. 2011;66(6):965–972. doi: 10.1590/S1807-59322011000600008
  • Deng Y, Zou J, Deng T, et al. Clinicopathological and prognostic significance of GLUT1 in breast cancer: a meta-analysis. Medicine. 2018;97(48):e12961. doi: 10.1097/MD.0000000000012961
  • Sun X, Shao Y, Liu M, et al. High-concentration glucose enhances invasion in invasive ductal breast carcinoma by promoting Glut1/MMP2/MMP9 axis expression. Oncol Lett. 2017;13(5):2989–2995. doi: 10.3892/ol.2017.5843
  • Krzeslak A, Wojcik-Krowiranda K, Forma E, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res. 2012;18(3):721–728. doi: 10.1007/s12253-012-9500-5
  • Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–276. doi: 10.1093/jnci/93.4.266
  • Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–662. doi: 10.1002/jcp.20166
  • Chen C, Pore N, Behrooz A, et al. Regulation of glut1 mRNA by hypoxia-inducible factor-1: interaction between H-ras and hypoxia. J Biol Chem. 2001;276(12):9519–9525. doi: 10.1074/jbc.M010144200
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–732. doi: 10.1038/nrc1187
  • Kang SS, Chun YK, Hur MH, et al. Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Jap J Cancer Res. 2002;93(10):1123–1128. doi: 10.1111/j.1349-7006.2002.tb01214.x
  • Li N, Tan W, Li J, et al. Glucose metabolism in breast cancer and its implication in cancer therapy. Int J Clin Med. 2011;2(2):110–128. doi: 10.4236/ijcm.2011.22022
  • Chai YJ, Yi JW, Oh SW, et al. Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: analysis of data from the cancer genome atlas. Surgery. 2017;161(1):188–194. doi: 10.1016/j.surg.2016.04.050
  • Godoy A, Salazar K, Figueroa C, et al. Nutritional channels in breast cancer. J Cell Mol Med. 2009;13(9b):3973–3984. doi: 10.1111/j.1582-4934.2008.00544.x
  • Hussein YR, Bandyopadhyay S, Semaan A, et al. Glut-1 expression correlates with basal-like breast cancer. Transl Oncol. 2011;4(6):321–327. doi: 10.1593/tlo.11256
  • Wang J, Ye C, Chen C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8(10):16875. doi: 10.18632/oncotarget.15171
  • Godoy A, Ulloa V, Rodríguez F, et al. Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol. 2006;207(3):614–627. doi: 10.1002/jcp.20606
  • Pinheiro C, Sousa B, Albergaria A, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. EJC Supplements. 2011;8(5):101. doi: 10.1016/S1359-6349(10)71197-6
  • Alvarez JV, Belka GK, Pan T, et al. Oncogene pathway activation in mammary tumors dictates FDG-PET uptake. Cancer Res. 2014;74(24):7583–7598. doi: 10.1158/0008-5472.CAN-14-1235
  • Pathiraja TN, Thakkar KN, Jiang S, et al. TRIM24 links glucose metabolism with transformation of human mammary epithelial cells. Oncogene. 2015;34(22):2836–2845. doi: 10.1038/onc.2014.220
  • Wu Q, Ba-Alawi W, Deblois G, et al. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun. 2020;11(1):4205. doi: 10.1038/s41467-020-18020-8
  • Venturelli L, Nappini S, Bulfoni M, et al. Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells. Sci Rep. 2016;6(1):21629. doi: 10.1038/srep21629
  • Guo Q, Li C, Zhou W, et al. GLUT1-mediated effective anti-miRNA21 pompon for cancer therapy. Acta Pharm Sin B. 2019;9(4):832–842. doi: 10.1016/j.apsb.2019.01.012
  • Ahn HJ, Lee KY, Lee SM, et al. Prognosis of GLUT1 expression in human breast carcinoma. J Korean Breast Cancer Soc. 2001;4(2):167–171. doi: 10.4048/jkbcs.2001.4.2.167
  • Yu M, Yongzhi H, Chen S, et al. The prognostic value of GLUT1 in cancers: a systematic review and meta-analysis. Oncotarget. 2017;8(26):43356. doi: 10.18632/oncotarget.17445
  • Oh S, Kim H, Nam K, et al. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells. BMB Rep. 2017;50(3):132. doi: 10.5483/BMBRep.2017.50.3.189
  • Grover-McKay M, Walsh SA, Seftor EA, et al. Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res. 1998;4(2):115–120. doi: 10.1007/BF02904704