574
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Antimicrobial resistance and carbapenemase dissemination in Pseudomonas aeruginosa isolates from Libyan hospitals: a call for surveillance and intervention

, ORCID Icon, &
Article: 2344320 | Received 05 Feb 2024, Accepted 15 Apr 2024, Published online: 21 Apr 2024

References

  • Balasubramanian D, Schneper L, Kumari H, et al. A dynamic and intricate regulatory network determines pseudomonas aeruginosa virulence. Nucleic Acids Res. 2013;41(1):1. doi: 10.1093/NAR/GKS1039
  • Bokaeian M, Shahraki Zahedani, Shahram M, et al. Frequency of PER, VEB, SHV, TEM and CTX-M Genes in resistant strains of pseudomonas aeruginosa producing extended spectrum β-lactamases. Jundishapur J Microbiol. 2015;8(1):13783.
  • Colodner R. Extended-spectrum β-lactamases: a challenge for clinical microbiologists and infection control specialists. Am J Infect Control. 2005;33(2):104–8. doi: 10.1016/j.ajic.2004.07.010
  • Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933. doi: 10.1128/CMR.14.4.933-951.2001
  • Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15–21. doi: 10.1177/2049936115621709
  • Dortet L, Poirel L, Nordmann P, et al. Worldwide dissemination of the NDM-Type carbapenemases in gram-negative bacteria. Bio Med Res Inter. 2014;2014:1–12. doi: 10.1155/2014/249856
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440. doi: 10.1128/CMR.00001-07
  • Reyes J, Komarow L, Chen L, et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): a prospective cohort study. Lancet Microbe. 2023;4(3):e159–e170. doi: 10.1016/S2666-5247(22)00329-9
  • Zeng M, Xia J, Zong Z, et al. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. J Microbiol Immunol Infect. 2023;56:653–671. doi: 10.1016/j.jmii.2023.01.017
  • WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. [cited 2020 Aug 21]. Available from: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995;15(3):162–168. doi: 10.1007/BF01569821
  • Nivens DE, Ohman DE, Williams J, et al. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol. 2001;183(3):1047–1057. doi: 10.1128/JB.183.3.1047-1057.2001
  • Wood SR, Firoved AM, Ornatowski W, et al. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res. 2009;41(2):208–215.
  • Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol. 2014;68(1):1. doi: 10.1007/S00248-013-0297-X
  • Spilker T, Coenye T, Vandamme P, et al. PCR-Based assay for differentiation of Pseudomonas aeruginosa from other pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074–2079. doi: 10.1128/JCM.42.5.2074-2079.2004
  • Pitout JDD, Gregson DB, Poirel L, et al. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129. doi: 10.1128/JCM.43.7.3129-3135.2005
  • Nanvazadeh F, Khosravi AD, Zolfaghari MR, et al. Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns. 2013;39(7):1409–1413. doi: 10.1016/J.BURNS.2013.03.008
  • Fatima A, Naqvi SB, Khaliq SA, et al. Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa isolated from patients of lower respiratory tract infections. Springerplus. 2012;1(1):1–4. doi: 10.1186/2193-1801-1-70
  • Akpaka PE, Swanston WH, Ihemere HN, et al. Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and tobago. J Clin Microbiol. 2009;47(8):2670. doi: 10.1128/JCM.00362-09
  • Nordmann P, Poirel L, Carrër A, et al. How to detect NDM-1 producers. J Clin Microbiol. 2011;49(2):718–721. doi: 10.1128/JCM.01773-10
  • Seyedjavadi SS, Goudarzi M, Sabzehali F. Relation between blaTEM, blaSHV and blaCTX-M genes and acute urinary tract infections. J Acute Dis. 2016;5(1):71–76. doi: 10.1016/J.JOAD.2015.07.007
  • Cao V, Lambert T, Nhu DQ, et al. Distribution of extended-spectrum beta-lactamases in clinical isolates of Enterobacteriaceae in vietnam. Antimicrob Agents Chemother. 2002;46(12):3739–3743. doi: 10.1128/AAC.46.12.3739-3743.2002
  • Warjri I, Dutta TK, Lalzampuia H, et al. Detection and characterization of extended-spectrum β-lactamases (blaCTX-M-1 and blaSHV) producing Escherichia coli, Salmonella spp. And Klebsiella pneumoniae isolated from humans in Mizoram. Vet World. 2015;8(5):599–604. doi: 10.14202/VETWORLD.2015.599-604
  • Remya P, Shanthi M, Sekar U. Prevalence of blaKPC and its occurrence with other beta-lactamases in Klebsiella pneumoniae. J Lab Physicians. 2018;10(4):387. doi: 10.4103/JLP.JLP_29_18
  • Wang EW, Jung JY, Pashia ME, et al. Otopathogenic Pseudomonas aeruginosa strains as competent biofilm formers. Arch Otolaryngol Head Neck Surg. 2005;131(11):983–989. doi: 10.1001/ARCHOTOL.131.11.983
  • Stepanović S, Vuković D, Dakić I, et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–179. doi: 10.1016/S0167-7012(00)00122-6
  • ALshaiki JM, Toweir A. Prevalence Pseudomonas aeruginosa among Libyan patients and its association with hospital’s environment in Benghazi. J Med Microb Diagn. 2017;6(2):1–8. doi: 10.4172/2161-0703.1000257
  • Kraiem AG, Zorgani A, Elahmer O, et al. Carbapenem-resistant gram-negative bacilli in Tripoli, Libya. Am J Infect Control. 2016;44(10):1192–1194. doi: 10.1016/j.ajic.2016.04.245
  • Mathlouthi N, Areig Z, Al Bayssari C, et al. Emergence of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates collected from some Libyan hospitals. Microb Drug Resist. 2015;21(3):335–341. doi: 10.1089/MDR.2014.0235
  • Slimene K, El SA, Dziri O, et al. Epidemiology, phenotypic and genotypic characterization of carbapenem-resistant gram-negative bacteria from a Libyan hospital. Microb Drug Resist. 2023;29(8):333–343. doi: 10.1089/MDR.2022.0060
  • Zorgani A, Almagatef A, Sufya N, et al. Detection of CTX-M-15 among uropathogenic Escherichia coli isolated from five major hospitals in Tripoli, libya. Oman Med J. 2017;32(4):322. doi: 10.5001/OMJ.2017.61
  • Babour IA, Mohamed MB, Shehabi AA. Molecular characterization of Pseudomonas aeruginosa isolates from various clinical specimens in Khartoum/Sudan: Antimicrobial resistance and virulence genes. Int Arab J Antimicrob Agents. 2020;10(1). doi: 10.3823/840
  • Tchakal-Mesbahi A, Metref M, Singh VK, et al. Characterization of antibiotic resistance profiles in Pseudomonas aeruginosa isolates from burn patients. Burns. 2021;47(8):1833–1843. doi: 10.1016/J.BURNS.2021.03.005
  • Kraiem AG, Zorgani A, Elahmer O, et al. New Delhi metallo-β-lactamase and OXA-48 carbapenemases in Gram-negative bacilli isolates in Libya. Libyan Journal Of Medicine. 2015;10(1):29206. doi: 10.3402/ljm.v10.29206
  • Azab MM, Shehata A, Mohamed M-O. 10 and GES-1 Extended-spectrum β-lactamases play a major role in causing antibiotic resistance of pseudomonas aeruginosa isolated from nosocomial infections in Ismailia, egypt. Egypt J Med Microbiol. 2015;24(4):81–88. doi: 10.12816/0030399
  • Codjoe FS, Donkor ES. Carbapenem Resistance: a review. Med Sci. 2018;6(1):1. doi: 10.3390/MEDSCI6010001
  • World Health Organization (WHO). Implementation manual to prevent and control the spread of carbapenem-resistant organisms at the national and health care facility level. 2019. [cited 2023 Aug 9]. Available from: https://apps.who.int/iris/bitstream/handle/10665/312226/WHO-UHC-SDS-2019.6-eng.pdf
  • Franklin MJ, Nivens DE, Weadge JT, et al. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2011 2. doi: 10.3389/fmicb.2011.00167
  • Pericolini E, Colombari B, Ferretti G, et al. Real-time monitoring of Pseudomonas aeruginosa biofilm formation on endotracheal tubes in vitro. BMC Microbiol. 2018;18(1):1–10. doi: 10.1186/s12866-018-1224-6
  • Wozniak DJ, Wyckoff TJO, Starkey M, et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A. 2003;100(13):7907–7912. doi: 10.1073/pnas.1231792100