2,110
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fully discrete WENO with double entropy condition for hyperbolic conservation laws

, &
Article: 2145373 | Received 15 Jul 2022, Accepted 30 Oct 2022, Published online: 06 Jan 2023

Reference

  • Balsara, D. S., & Shu, C-W. (2000). Monotonicity preserving weighted essentially Non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160(2), 405–452. https://doi.org/10.1006/jcph.2000.6443
  • Butcher, J. C. (2016). Numerical methods for ordinary differential equations (3rd ed.). Chichester West Sussex United Kingdom.
  • Davis, S. F. (1987). A simplified TVD finite difference scheme via artificial viscosity. SIAM Journal on Scientific and Statistical Computing, 8(1), 1–18. https://doi.org/10.1137/0908002
  • Dong, H., Lidong, Z., & Chun-Hian, L. (2002). High order discontinuities decomposition entropy condition schemes for Euler equations. CFD Journal, 10(4), 448–457.
  • Dumbser, M. (2014). Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Computer Methods in Applied Mechanics and Engineering, 280, 57–83. https://doi.org/10.1016/j.cma.2014.07.019
  • Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3), 357–393. https://doi.org/10.1016/0021-9991(83)90136-5
  • Henrick, A. K., Aslam, T. D., & Powers, J. M. (2005). Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 207(2), 542–567. https://doi.org/10.1016/j.jcp.2005.01.023
  • Huang, C-S, & Arbogast, T. (2017). An eulerian–lagrangian weighted essentially nonoscillatory scheme for nonlinear conservation laws. Numerical Methods for Partial Differential Equations, 33(3), 651–680. https://doi.org/10.1002/num.22091
  • Huang, C-S, Arbogast, T., & Hung, C-H. (2016). A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws. Journal of Computational Physics, 322(4), 559–585. https://doi.org/10.1016/j.jcp.2016.06.027
  • Jiang, G., & Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202–228. https://doi.org/10.1006/jcph.1996.0130
  • Lax, P. (1971). Shock waves and entropy. In E. H. Zarantonello (Ed.), Contributions to nonlinear functional analysis (pp. 603–634). Academic Press. https://doi.org/10.1016/B978-0-12-775850-3.50018-2
  • Lax, P., & Wendroff, B. (1960). Systems of conservation laws. Communications on Pure and Applied Mathematics, 13, 217–237. https://doi.org/10.1002/cpa.3160130205
  • Li, J., & Du, Z. (2016). A Two-stage fourth order time-accurate discretization for Lax-wendroff type flow solvers I. Hyperbolic conservation laws. SIAM Journal on Scientific Computing, 38(5), A3046–A3069. https://doi.org/10.1137/15M10-52512
  • Osher, S., & Harten, A. (1987). Uniformly high-order accurate nonoscillatory schemes. I. SIAM Journal on Numerical Analysis, 24(2), 279–309. https://doi.org/10.1137/0724022
  • Qiu, J. (2007). WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. Journal of Computational and Applied Mathematics, 200(2), 591–605. https://doi.org/10.1016/j.cam.2006.01.022
  • Shen, Y., Liu, L., & Yang, Y. (2014). Multistep weighted essentially non-oscillatory scheme. International Journal for Numerical Methods in Fluids, 75(4), 231–249. https://doi.org/10.1002/fld.3889
  • Shen, Y., & Zha, G. (2014). Improvement of weighted essentially non-oscillatory schemes near discontinuities. Computers & Fluids, 96, 1–9. https://doi.org/10.1016/j.compfluid.2014.02.010
  • Shu, C. W. (1997). Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced numerical approximation of nonlinear hyperbolic equations (pp. 325–432). Springer Berlin Heidelberg.
  • Sohn, S.-I. (2005). A new TVD-MUSCL scheme for hyperbolic conservation laws. Computers & Mathematics with Applications, 50(1-2), 231–248. https://doi.org/10.1016/j.camwa.2004.10.047
  • Strang, G. (1968). On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5(3), 506–517. https://doi.org/10.1137/0705041
  • Svenn Tveit. (2011). Numerical methods for conservation laws with a discontinuous flux function [Master].
  • Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 21(5), 995–1011. https://doi.org/10.1137/0721-062
  • Titarev, V. A., & Toro, E. F. (2002). Ader: Arbitrary high order Godunov approach. Journal of Scientific Computing, 17(1/4), 609–618. https://doi.org/10.1023/A:1015126814947
  • Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics (3rd ed.). Springer.
  • Toro, E. F., & Hidalgo, A. (2009). ADER finite volume schemes for nonlinear reaction–diffusion equations. Applied Numerical Mathematics, 59(1), 73–100. https://doi.org/10.1016/j.apnum.2007.12.001
  • Wang, Z., Zhu, J., Yang, Y., & Zhao, N. (2021). A new fifth-order alternative finite difference multi-resolution WENO scheme for solving compressible flow. Computer Methods in Applied Mechanics and Engineering, 382, 113853. https://doi.org/10.1016/j.cma.2021.113853
  • Zhao, J., Özgen-Xian, I., Liang, D., Wang, T., & Hinkelmann, R. (2019). An improved multislope MUSCL scheme for solving shallow water equations on unstructured grids. Computers & Mathematics with Applications, 77(2), 576–596. https://doi.org/10.1016/j.camwa.2018.09.059
  • Zhou, T., & Dong, H. T. (2021). A fourth-order entropy condition scheme for systems of hyperbolic conservation laws. Engineering Applications of Computational Fluid Mechanics, 15(1), 1259–1281. https://doi.org/10.1080/19942060.2021.1955010
  • Zhou, T., & Dong, H. T. (2022). A sixth order entropy condition scheme for compressible flow. Computers & Fluids, 243, 105514. https://doi.org/10.1016/j.compfluid.2022.105514
  • Zorío, D., Baeza, A., & Mulet, P. (2017). An approximate Lax–wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. Journal of Scientific Computing, 71(1), 246–273. https://doi.org/10.1007/s10915-016-0298-2