1,777
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An efficient geometric constraint handling method for surrogate-based aerodynamic shape optimization

, , &
Article: e2153173 | Received 09 Aug 2022, Accepted 25 Nov 2022, Published online: 06 Jan 2023

References

  • Akguen, M. A., Haftka, R. T., Wu, K. C., et al. (2001). Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA Journal, 39(3), 511–516. https://doi.org/10.2514/2.1336
  • Batina, J. T. (1991). Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing. Journal of Aircraft, 28(6), 397–402. https://doi.org/10.2514/3.46040
  • Bons, N. P., Mader, C. A., Martins, J. R. R. A., et al. (2018). High-fidelity aerodynamic shape optimization of a full configuration regional jet. 2018 aiaa/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida. https://doi.org/10.2514/6.2018-0106.
  • Bouhlel, M. A., Bartoli, N., Regis, R. G., et al. (2018). Efficient global optimization for high-dimensional constrained problems by using the Kriging models combined with the partial least squares method. Engineering Optimization, 50(12), 2038–2053. https://doi.org/10.1080/0305215X.2017.141-9344
  • Bouhlel, M. A., & Martins, J. R. R. A. (2019). Gradient-enhanced kriging for high-dimensional problems. Engineering with Computers, 35(1), 157–173. https://doi.org/10.1007/s00366-018-0590-x
  • Brelje, B. J., Anibal, J. L., Yildirim, A., et al. (2020). Flexible formulation of spatial integration constraints in aerodynamic shape optimization. AIAA Journal, 58(6), 2571–2580. https://doi.org/10.2514/1.J058366
  • Chen, S., Lyu, Z. J., Kenway, G. K. W., & Martins, J. R. R. A. (2016). Aerodynamic shape optimization of common research model wing-body-tail configuration. Journal of Aircraft, 53(1), 276–293. https://doi.org/10.2514/1.C033328
  • Courrier, N., Boucard, P. A., & Soulier, B. (2016). Variable-fidelity modeling of structural analysis of assemblies. Journal of Global Optimization, 64(3), 577–613. https://doi.org/10.1007/s10898-015-0345-9
  • Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311–338. https://doi.org/10.1016/S0045-7825(99)00389-8
  • Forrester, A. I. J., & Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 45(1-3), 50–79. https://doi.org/10.1016/j.paerosci.2008.11.001
  • Ha, H., Oh, S., & Yee, K. (2014). Feasibility study of hierarchical kriging model in the design optimization process. Journal of the Korean Society for Aeronautical & Space Sciences, 42(2), 108–118. https://doi.org/10.5139/JKSAS.2014.42.2.108
  • Haftka, R. T., Villanueva, D., Chaudhuri, A., et al. (2016). Parallel surrogate-assisted global optimization with expensive functions – a survey. Structural and Multidisciplinary Optimization, 54(1), 3–13. https://doi.org/10.1007/s00158-016-1432-3
  • Haghighat, S., Martins, J. R. R. A., & Liu, H. H. T. (2012). Aeroservoelastic design optimization of a flexible wing. Journal of Aircraft, 49(2), 432–443. https://doi.org/10.2514/1.C031344
  • Han, S. Q. (2021). High-accurate numerical approaches for coaxial rotor blade-tip-vortex simulation. [Ph.D. thesis, Northwestern Polytechnical University].
  • Han, S. Q., Song, W. P., Han, Z. H., et al. (2019). Hybrid inverse/optimization design method for rigid coaxial rotor airfoils considering reverse flow. Aerospace Science and Technology, 95, 1–15. https://doi.org/10.1016/j.ast.2019.105488
  • Han, Z. H. (2016a). Kriging surrogate model and its application to design optimization: a review of recent progress. Acta Aeronautica et Astronautica Sinica, 37(11), 3197–3225. https://doi.org/10.7527/S1000-6893.2016.0083
  • Han, Z. H. (2016b). SurroOpt: a generic surrogate-based optimization code for aerodynamic and multidisciplinary design. Proceedings of ICAS 2016.
  • Han, Z. H., Goertz, S., & Zimmermann , R. (2013). Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerospace Science and Technology, 25(1), 177–189. https://doi.org/10.1016/j.ast.2012.01.006
  • Han, Z. H., Xu, C. Z., Zhang, L., et al. (2020). Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids. Chinese Journal of Aeronautics, 33(1), 31–47. https://doi.org/10.1016/j.cja.2019.05.001
  • Han, Z. H., Zhang, Y., Song, C. X., & Zhang, K. S. (2017). Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization. AIAA Journal, 55(12), 4330–4346. https://doi.org/10.2514/1.J055842
  • Hwang, J. T., Lee, D. Y., Cutler, J. W., & Martins, J. R. R. A. (2014). Large-scale multidisciplinary optimization of a small satellites design and operation. Journal of Spacecraft and Rockets, 51(5), 1648–1663. https://doi.org/10.2514/1.A32751
  • Jo, Y., Yi, S., Choi, S., et al. (2016). Adaptive variable-fidelity analysis and design using dynamic fidelity indicators. AIAA Journal, 54(11), 3564–3579. https://doi.org/10.2514/1.J054591
  • Kenway, G. K. W., Kennedy, G. J., & Martins, J. R. R. A. (2014). Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA Journal, 52(5), 935–951. https://doi.org/10.2514/1.J052255
  • Kenway, G. K. W., & Martins, J. R. R. A. (2014). Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal of Aircraft, 51(1), 144–160. https://doi.org/10.2514/1.C032150
  • Kenway, G. K. W., & Martins, J. R. R. A. (2016). Multipoint aerodynamic shape optimization investigations of the common research model wing. AIAA Journal, 54(1), 61–73. https://doi.org/10.2514/6.2014-0567
  • Kreisselmeier, G., & Steinhauser, R. (1979). Systematic control design by optimizing a vector performance index. Proceedings of the IFAC Symposium, 12(7), 113–117. https://doi.org/10.1016/B978-0-08-024488-4.50022-X
  • Laurenceau, J., Meaux, M., Montagnac, M., & Sagaut, P. (2012). Comparison of gradient-based and gradient-enhancedresponse-surface-based optimizers. AIAA Journal, 48(5), 981–994. https://doi.org/10.2514/1.45331
  • Lee, E., & Martins, J. R. R. A. (2012). Structural topology optimization with design-dependent pressure loads. Computer Methods in Applied Mechanics and Engineering, 233-236, 40–48. https://doi.org/10.1016/j.cma.2012.04.007
  • Lei, R. W., Bai, J. Q., & Xu, D. Y. (2019). Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method. Aerospace Science and Technology, 93, 105285.1–105285.14. https://doi.org/10.1016/j.ast.2019.07.018
  • Leifsson, L., & Koziel, S. (2015). Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress. Journal of Computational Science, 10, 45–54. https://doi.org/10.1016/j.jocs.2015.01.003
  • Leifsson, L., Koziel, S., & Tesfahunegn, Y. A. (2016). Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates. AIAA Journal, 54(2), 531–541. https://doi.org/10.2514/1.J054128
  • Li, J. C., Cai, J. S., & Qu, K. (2019). Surrogate-based aerodynamic shape optimization with the active subspace method. Structural and Multidisciplinary Optimization, 59(2), 403–419. https://doi.org/10.1007/s00158-018-2073-5
  • Liu, F., Han, Z. H., Zhang, Y., et al. (2019). Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance. Aerospace Science and Technology, 93(10), 105345. https://doi.org/10.1016/j.ast.2019.105345
  • Liu, J., Song, W. P., Han, Z. H., & Zhang, Y. (2017). Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models. Structural and Multidisciplinary Optimization, 55(3), 925–943. https://doi.org/10.1007/s00158-016-1546-7
  • Lu, Y., Li, Z. Y., Chang, X., Chuang, Z. J., & Xing, J. H. (2021). An aerodynamic optimization design study on the bio-inspired airfoil with leading-edge tubercles. Engineering Applications of Computational Fluid Mechanics, 15(1), 292–312. https://doi.org/10.1080/19942060.2020.1856723
  • Lyu, Z. J., & Martins, J. R. R. A. (2014). Aerodynamic design optimization studies of a blended-wing-body aircraft. Journal of Aircraft, 51(5), 1604–1617. https://doi.org/10.2514/1.C032491
  • Madsen, M. H. A., Zahle, F., Sørensen, N. N., & Martins, J. R. R. A. (2019). Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine. Wind Energy Science, 4(2), 163–192. https://doi.org/10.5194/wes-4-163-2019
  • Martins, J. R. R. A. (2002). A Coupled-Adjoint Method for High-Fidelity Aero-Structural Optimization. [Ph.D. thesis, Stanford University].
  • Martins, J. R. R. A., Alonso, J. J., & Reuther, J. J. (2002). Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method. 9th aiaa/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia. https://doi.org/10.2514/6.2002-5402.
  • Mortished, C., Ollar, J., Jones, R., Benzie, P., et al. (2016). Aircraft wing optimization based on computationally efficient gradient-enhanced ordinary kriging metamodel building. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, https://doi.org/10.2514/6.2016-0420
  • Paris, J., Navarrina, F., Colominas, I., et al. (2010). Block aggregation of stress constraints in topology optimization of structures. Advances in Engineering Software, 41(3), 433–441. https://doi.org/10.1016/j.advengsoft.2009.03.006
  • Park, D., Cha, J., Kim, M., & Go, J. S. (2020). Multi-objective optimization and comparison of surrogate models for separation performances of cyclone separator based on CFD, RSM, GMDH-neural network, back propagation-ANN and genetic algorithm. Engineering Applications of Computational Fluid Mechanics, 14(1), 180–201. https://doi.org/10.1080/19942060.2019.1691054
  • Parr, J. M., Holden, C. M. E., Forrester, A. I. J., & Keane, A. J. (2010). Review of efficient surrogate infill sampling criteria with constraint handling. Proceedings of the 2nd international conference on engineering optimization.
  • Parr, J. M., Keane, A. J., Forrester, A. I. J., & Holdenb, C. M. E. (2012). Infill sampling criteria for surrogate-based optimization with constraint handling. Engineering Optimization, 44(10), 1147–1166. https://doi.org/10.1080/0305215X.2011.637556
  • Poole, D. J., Allen, C. B., & Rendall, T. C. S. (2015). Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases. 53rd AIAA Aerospace Sciences Meeting, https://doi.org/10.2514/6.2015-1947
  • Poon, N. M. K., & Martins, J. R. R. A. (2005). On structural optimization using constraint aggregation. In 6th world congress on structural and multidisciplinary optimization, 2005. Rio de Janeiro.
  • Poon, N. M. K., & Martins, J. R. R. A. (2007). An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Structural and Multidisciplinary Optimization, 34(1), 61–73. https://doi.org/10.1007/s00158-006-0061-7
  • Queipo, N. V., Haftka, R. T., Shyy, W., Goela, T., et al. (2005). Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41(1), 1–28. https://doi.org/10.1016/j.paerosci.2005.02.001
  • Raspanti, C., Bandoni, J., & Biegler, L. (2000). New strategies for flexibility analysis and design under uncertainty. Computers & Chemical Engineering, 24(9), 2193–2209. https://doi.org/10.1016/S0098-1354(00)00591-3
  • Reist, T. A., & Zingg, D. W. (2017). High-fidelity aerodynamic shape optimization of a lifting-fuselage concept for regional aircraft. Journal of Aircraft, 54(3), 1085–1097. https://doi.org/10.2514/1.C033798
  • Schonlau, M. (1997). Computer experiments and global optimization. [Ph.D. thesis, University of Waterloo].
  • Secco, N. R., & Martins, J. R. R. A. (2019). RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes. Journal of Aircraft, 56(1), 217–227. https://doi.org/10.2514/1.C034934
  • Viana, F. A. C., Simpson, T. W., Balabanov, V., & Toropov, V. (2014). Special section on multidisciplinary design optimization: Metamodeling in multidisciplinary design optimization: How Far have We really come? AIAA Journal, 52(4), 670–690. https://doi.org/10.2514/1.J052375
  • Xu, S. R., Radford, D., Meyer, M., & Müller, J. (2015). CAD-based adjoint shape optimisation of a one-stage turbine with geometric constraints. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. https://doi.org/10.1115/GT2015-42237.
  • Zhang, K. S., Han, Z. H., Gao, Z. J., et al. (2019). Constraint aggregation for large number of constraints in wing surrogate-based optimization. Structural and Multidisciplinary Optimization, 59(2), 421–438. https://doi.org/10.1007/s00158-018-2074-4
  • Zhang, Y., Han, Z. H., & Zhang, K. S. (2018). Variable-fidelity expected improvement method for efficient global optimization of expensive functions. Structural and Multidisciplinary Optimization, 58(4), 1431–1451. https://doi.org/10.1007/s00158-018-1971-x