1,710
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal-hydraulic performance of flat-plate microchannel with fractal tree-like structure and self-affine rough wall

, , , , & ORCID Icon
Article: e2153174 | Received 07 Sep 2022, Accepted 25 Nov 2022, Published online: 06 Jan 2023

References

  • Alston, M. E., & Barber, R. (2016). Leaf venation, as a resistor, to optimize a switchable IR absorber. Scientific Reports, 6(1), 1–16. https://doi.org/10.1038/srep31611
  • Bejan, A. (2005). The constructal law of organization in nature: Tree-shaped flows and body size. Journal of Experimental Biology, 208(9), 1677–1686. https://doi.org/10.1242/jeb.01487
  • Bejan, A. (2017). Evolution in thermodynamics. Applied Physics Reviews, 4(1), 011305. https://doi.org/10.1063/1.4978611
  • Bejan, A., Rocha, L., & Lorente, S. (2000). Thermodynamic optimization of geometry: T-and Y-shaped constructs of fluid streams. International Journal of Thermal Sciences, 39(9-11), 949–960. https://doi.org/10.1016/s1290-0729(00)01176-5
  • Chen, L. (2012). Progress in study on constructal theory and its applications. Science China Technological Sciences, 55(3), 802–820. https://doi.org/10.1007/s11431-011-4701-9
  • Chen, S., Miguel, A. F., & Aydin, M. (2021). Constructal design in the cooling and hydraulic performance of tube heat sinks. International Communications in Heat and Mass Transfer, 129, 105668. https://doi.org/10.1016/j.icheatmasstransfer.2021.105668
  • Chen, Y., Zhang, C., Shi, M., & Peterson, G. (2009). Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Physical Review E, 80(2), 026301. https://doi.org/10.1103/physreve.80.026301
  • Chen, Y., Zhang, C., Shi, M., & Yang, Y. (2010). Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink. AIChE Journal, 56(8), 2018–2029. https://doi.org/10.1002/aic.12135
  • Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290(5496), 1532–1535. https://doi.org/10.1126/science.290.5496.1532
  • Croce, G., & D'Agaro, P. (2005). Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow. Journal of Physics D: Applied Physics, 38(10), 1518. https://doi.org/10.1088/0022-3727/38/10/005
  • Fan, Y., Lyu, P., Zhan, D., Ouyang, K., Tan, X., & Li, J. (2022). Surrogate model-based multiobjective design optimization for air-cooled battery thermal management systems. Engineering Applications of Computational Fluid Mechanics, 16(1), 1031–1047. https://doi.org/10.1080/19942060.2022.2066180
  • Gosselin, L. (2007). Optimization of tree-shaped fluid networks with size limitations. International Journal of Thermal Sciences, 46(5), 434–443. https://doi.org/10.1016/j.ijthermalsci.2006.06.006
  • Gosselin, L., & da Silva, A. K. (2007). Constructal microchannel networks of rarefied gas with minimal flow resistance. Journal of Applied Physics, 101(11), 114902. https://doi.org/10.1063/1.2721783
  • Guo, R., Fu, T., Zhu, C., Yin, Y., & Ma, Y. (2019). Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations. Chemical Engineering Journal, 373, 1203–1211. https://doi.org/10.1016/j.cej.2019.05.124
  • He, Z., Yan, Y., & Zhang, Z. (2021). Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy, 216, 119223. https://doi.org/10.1016/j.energy.2020.119223
  • Ho, J., See, Y., Leong, K., & Wong, T. (2021). An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure. Energy Conversion and Management, 245, 114608. https://doi.org/10.1016/j.enconman.2021.114608
  • Jing, D., & Song, J. (2019). Comparison on the hydraulic and thermal performances of two tree-like channel networks with different size constraints. International Journal of Heat and Mass Transfer, 130, 1070–1074. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.010
  • Jing, D., Song, S., & He, L. (2019). Reexamination of Murray’s law for tree-like rectangular microchannel network with constant channel height. International Journal of Heat and Mass Transfer, 128, 1344–1350. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.006
  • Kandlikar, S. G., Schmitt, D., Carrano, A. L., & Taylor, J. B. (2005). Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Physics of Fluids, 17(10), 100606. https://doi.org/10.1063/1.1896985
  • Kumar, P. (2019). Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. International Journal of Thermal Sciences, 136, 33–43. https://doi.org/10.1016/j.ijthermalsci.2018.10.006
  • Le, H. S., Galal, A. M., Alhamrouni, I., Aly, A. A., Abbas, M., Saidi, A. S., Truong, T. H., Dahari, M., & Wae-hayee, M. (2022). Heat transfer efficiency optimization of a multi-nozzle micro-channel heat sink utilizing response surface methodology. Case Studies in Thermal Engineering, 37, 102266. https://doi.org/10.1016/j.csite.2022.102266
  • Lilly, T., Duncan, J., Nothnagel, S., Gimelshein, S., Gimelshein, N., Ketsdever, A., & Wysong, I. (2007). Numerical and experimental investigation of microchannel flows with rough surfaces. Physics of Fluids, 19(10), 106101. https://doi.org/10.1063/1.2775977
  • Liu, F., Zhu, R., & Jing, D. (2022). Hydraulic and thermal performances of tree-like convergent microchannel heat sinks. Fractals, 30(04), 2250096. https://doi.org/10.1142/s0218348x22500967
  • Liu, S., Bahrami, D., Kalbasi, R., Jahangiri, M., Lu, Y., Yang, X., Band, S. S., Chau, K.-W., & Mosavi, A. (2022). Efficacy of applying discontinuous boundary condition on the heat transfer and entropy generation through a slip microchannel equipped with nanofluid. Engineering Applications of Computational Fluid Mechanics, 16(1), 952–964. https://doi.org/10.1080/19942060.2022.2057591
  • Liu, S., & Zhu, Q. (2021). A study on heat and mass transfer of power-law nanofluids in a fractal porous medium with complex evaporating surface. Fractals, 29(07), 2150211. https://doi.org/10.1142/s0218348x2150211x
  • Liu, Z., Gao, J., Xiao, B., Cao, J., Fang, J., Liang, M., & Long, G. (2022). A novel permeability model in damaged tree-like bifurcating networks considering the influence of roughness. Fractals, 30(01), 2250028. https://doi.org/10.1142/s0218348x22500281
  • Luo, Y., Liu, W., & Gou, J. (2019). Multiscale simulation of a novel leaf-vein-inspired gradient porous wick structure. Journal of Bionic Engineering, 16(5), 828–841. https://doi.org/10.1007/s42235-019-0100-x
  • Majumdar, A., & Tien, C. (1990). Fractal characterization and simulation of rough surfaces. Wear, 136(2), 313–327. https://doi.org/10.1016/0043-1648(90)90154-3
  • Pence, D. (2003). Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophysical Engineering, 6(4), 319–330. https://doi.org/10.1080/10893950290098359
  • Rostami, J., Abbassi, A., & Saffar-Avval, M. (2015). Optimization of conjugate heat transfer in wavy walls microchannels. Applied Thermal Engineering, 82, 318–328. https://doi.org/10.1016/j.applthermaleng.2015.02.069
  • Rostami, S., Zarringhalam, M., Alizadeh, A. a., Toghraie, D., & Goldanlou, A. S. (2020). Molecular dynamic simulation of argon boiling flow inside smooth and rough microchannels by considering the effects of cubic barriers. Journal of Molecular Liquids, 312, 113130. https://doi.org/10.1016/j.molliq.2020.113130
  • Rovenskaya, O. I., & Croce, G. (2016). Numerical simulation of gas flow in rough microchannels: Hybrid kinetic–continuum approach versus navier–stokes. Microfluidics and Nanofluidics, 20(5), 1–15. https://doi.org/10.1007/s10404-016-1746-x
  • Rubio-Jimenez, C. A., Hernandez-Guerrero, A., Cervantes, J. G., Lorenzini-Gutierrez, D., & Gonzalez-Valle, C. U. (2016). CFD study of constructal microchannel networks for liquid-cooling of electronic devices. Applied Thermal Engineering, 95, 374–381. https://doi.org/10.1016/j.applthermaleng.2015.11.037
  • Senn, S. M., & Poulikakos, D. (2004). Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. Journal of Power Sources, 130(1-2), 178–191. https://doi.org/10.1016/j.jpowsour.2003.12.025
  • Sisó, G., Rosell-Mirmi, J., Fernández, Á, Laguna, G., Vilarrubi, M., Barrau, J., Ibañez, M., & Rosell-Urrutia, J. (2021). Thermal analysis of a MEMS-based self-adaptive microfluidic cooling device. Micromachines, 12(5), 505. https://doi.org/10.3390/mi12050505
  • Song, X., Huang, H., Chen, Y., Xu, H., & Bai, Y. (2022). Effective simulation of flow in a moderately curved bend with a single short branch to support the design optimization of river-branch–plant configurations. Engineering Applications of Computational Fluid Mechanics, 16(1), 1420–1443. https://doi.org/10.1080/19942060.2022.2093276
  • Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126–129. https://doi.org/10.1109/edl.1981.25367
  • Wang, X.-Q., Yap, C., & Mujumdar, A. S. (2006). Laminar heat transfer in constructal microchannel networks with loops. Journal of Electronic Packaging, 128(3), 273-280. https://doi.org/10.1115/1.2229228
  • West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122–126. https://doi.org/10.1126/science.276.5309.122
  • Xia, C., Fu, J., Lai, J., Yao, X., & Chen, Z. (2015). Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Applied Thermal Engineering, 90, 1032–1042. https://doi.org/10.1016/j.applthermaleng.2015.07.024
  • Xu, P., Sasmito, A. P., Yu, B., & Mujumdar, A. S. (2016). Transport phenomena and properties in treelike networks. Applied Mechanics Reviews, 68(4), 040802. https://doi.org/10.1115/1.4033966.
  • Xu, P., & Yu, B. (2006). The scaling laws of transport properties for fractal-like tree networks. Journal of Applied Physics, 100(10), 104906. https://doi.org/10.1063/1.2392935
  • Xu, P., Yu, B., Yun, M., & Zou, M. (2006). Heat conduction in fractal tree-like branched networks. International Journal of Heat and Mass Transfer, 49(19-20), 3746–3751. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.033
  • Xu, S., Li, Y., Hu, X., & Yang, L. (2016). Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel. International Communications in Heat and Mass Transfer, 71, 86–95. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.024
  • Yang, S., Liang, M., Yu, B., & Zou, M. (2015). Permeability model for fractal porous media with rough surfaces. Microfluidics and Nanofluidics, 18(5), 1085–1093. https://doi.org/10.1007/s10404-014-1500-1
  • Yu, B., & Li, B. (2006). Fractal-like tree networks reducing the thermal conductivity. Physical Review E, 73(6), 066302. https://doi.org/10.1103/physreve.73.066302
  • Zhai, Y., Xia, G., Li, Z., & Wang, H. (2016). A novel flow arrangement of staggered flow in double-layered microchannel heat sinks for microelectronic cooling. International Communications in Heat and Mass Transfer, 79, 98–104. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.008
  • Zhang, C., Zhang, X., Li, Q., & Wu, L. (2019). Numerical study of bubble breakup in fractal tree-shaped microchannels. International Journal of Molecular Sciences, 20(21), 5516. https://doi.org/10.3390/ijms20215516