3,391
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on aerodynamic resistance reduction of high-speed train using vortex generator

, , &
Article: e2153925 | Received 31 Aug 2022, Accepted 27 Nov 2022, Published online: 06 Jan 2023

References

  • Aftab, S. M. A., & Murthy, P. S. (2012). Comparative study of vortex generator orientation on wing surface considering delta vortex generators. Applied Mechanics and Materials, 225, 79–84. https://doi.org/10.4028/www.scientific.net/AMM.225.79
  • Aider, J. L., Beaudoin, J. F., & Wesfreid, J. E. (2010). Drag and lift reduction of a 3D bluff-body using active vortex generators. Experiments in Fluids, 48(5), 771–789. https://doi.org/10.1007/s00348-009-0770-y
  • Ali, M. H., Mashud, M., Al Bari, A., & Islam, M. M. U. (2013). Aerodynamic drag reduction of a car by vortex generation. International Journal of Mechanical Engineering, 2(1), 12–21.
  • Aziz, A., Zhang, Y., & Gang, C. (2021). Computational studies of passive vortex generators for flow control on high-speed train. In Civil infrastructures confronting severe weathers and climate changes conference (pp. 95–108). Springer.
  • Babinsky, H., Li, Y., & Pitt Ford, C. W. (2009). Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA Journal, 47(3), 668–675. https://doi.org/10.2514/1.38022
  • Baker, C. J. (2014). A review of train aerodynamics Part 2 – Applications. The Aeronautical Journal, 118(1202), 345–382. https://doi.org/10.1017/S0001924000009179
  • Brownlie, L., Aihara, Y., CarboJrJ., Harber, E., Henry, R., Ilcheva, I., & Ostafichuk, P. (2016). The Use of vortex generators to reduce the aerodynamic drag of athletic apparel. Procedia Engineering, 147, 20–25. https://doi.org/10.1016/j.proeng.2016.06.183
  • Chen, Z. W., Ni, Y. Q., Wang, Y. W., Wang, S. M., & Liu, T. H. (2022). Mitigating crosswind effect on high-speed trains by active blowing method: a comparative study. Engineering Applications of Computational Fluid Mechanics, 16(1), 1064–1081. https://doi.org/10.1080/19942060.2022.2064921
  • Chung, K. M., Su, K. C., & Chang, K. C. (2021). The effect of vortex generators on shock-induced boundary layer separation in a transonic convex-corner flow. Aerospace, 8(6), 157. https://doi.org/10.3390/aerospace8060157
  • Gibertini, G., Boniface, J. C., Zanotti, A., Droandi, G., Auteri, F., Gaveriaux, R., & Pape, L. A. (2015). Helicopter drag reduction by vortex generators. Aerospace Science and Technology, 47, 324–339. https://doi.org/10.1016/j.ast.2015.10.004
  • Gönül, A., Okbaz, A., Kayaci, N., & Dalkilic, A. S. (2022). Flow optimization in a microchannel with vortex generators using genetic algorithm. Applied Thermal Engineering, 201, Article 117738. https://doi.org/10.1016/j.applthermaleng.2021.117738
  • Jiang, Z. W., Liu, T. H., Gu, H. Y., & Guo, Z. J. (2021). A numerical study of aerodynamic characteristics of a high-speed train with different rail models under crosswind. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 235(7), 840–853. https://doi.org/10.1177/0954409720969250
  • Katz, J., & Morey, F. (2008). Aerodynamics of large-scale vortex generator in ground effect. Journal of Fluids Engineering, 130(7), 750–755. https://doi.org/10.1115/1.2948361
  • Li, T., Dai, Z. Y., Yu, M. G., & Zhang, W. H. (2021). Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths. Engineering Applications of Computational Fluid Mechanics, 15(1), 549–560. https://doi.org/10.1080/19942060.2021.1895321
  • Li, T., Qin, D., & Zhang, J. Y. (2019). Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind. Chinese Journal of Mechanical Engineering, 32(1), 1–12. https://doi.org/10.1186/s10033-019-0402-2
  • Li, T., Qin, D., Zhou, N., & Zhang, W. H. (2022). Step-by-step numerical prediction of aerodynamic noise generated by high speed trains. Chinese Journal of Mechanical Engineering, 35.  https://doi.org/10.1186/s10033-022-00705-4
  • Liang, H., Sun, Y. C., Li, T., & Zhang, J. Y. (2022). Influence of marshalling length on aerodynamic characteristics of urban EMUs under crosswind. Journal of Applied Fluid Mechanics, 16(1), 9–20. 10.47176/JAFM.16.01.1338
  • Lin, J. C. (2002). Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences, 38(4-5), 389–420. https://doi.org/10.1016/S0376-0421(02)00010-6
  • Munoz-Paniagua, J., & García, J. (2020). Aerodynamic drag optimization of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 204, Article 104215. https://doi.org/10.1016/j.jweia.2020.104215
  • Oh, S., Jiang, C. H., Jiang, C. Y., & Marcus, P. S. (2018). Finding the optimal shape of the leading-and-trailing car of a high-speed train using design-by-morphing. Computational Mechanics, 62(1), 23–45. https://doi.org/10.1007/s00466-017-1482-4
  • Onorato, M., Costelli, A. F., & Garrone, A. (1984). Drag measurement through wake analysis. Society of Automotive Engineers, Inc.
  • Orellano, A., & Schober, M. (2006). Aerodynamic performance of a typical high-speed train. Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, August, 21–23.
  • Östh, J., Kaiser, E., Krajnović, S., & Noack, B. R. (2015). Cluster-based reduced-order modelling of the flow in the wake of a high speed train. Journal of Wind Engineering and Industrial Aerodynamics, 145, 327–338. https://doi.org/10.1016/j.jweia.2015.06.003
  • Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1), 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123
  • Said, I., Poonaesparan, M. K., Bohari, B., Idris, A., Rahman, C., Saad, M. R. A., & R, M. (2021). The effect of streamwise location of micro vortex generator on airfoil aerodynamic performance in subsonic flow. Journal of Aeronautics, Astronautics and Aviation, 53(2), 173–178.
  • Selvaraju, P. N., & Parammasivam, K. M. (2019). Empirical and numerical analysis of aerodynamic drag on a typical SUV CarModel at different locations of vortex generator. Journal of Applied Fluid Mechanics, 12(5), 1487–1496. https://doi.org/10.29252/jafm.12.05.29674
  • Shiva, K. M. R., Srinath, R., Vigneshwar, K., & Ravi Kumar, B. (2020). Aerodynamic design optimization of an aircraft wing for resistance reduction using computational fluid dynamics approach. Wind and Structures, 31(1): 15–20.
  • Sun, Z. X., Yao, S. B., & Yang, G. W. (2020). Research on aerodynamic optimization of high-speed train’s slipstream. Engineering Applications of Computational Fluid Mechanics, 14(1), 1106–1127. https://doi.org/10.1080/19942060.2020.1810128
  • Tian, H. Q. (2019). Review of research on high-speed railway aerodynamics in China. Transportation Safety and Environment, 1(1), 1–21. https://doi.org/10.1093/tse/tdz014
  • Tschepe, J., Nayeri, C. N., & Paschereit, C. O. (2021). On the influence of Reynolds number and ground conditions on the scaling of the aerodynamic drag of trains. Journal of Wind Engineering and Industrial Aerodynamics, 213, Article 104594. https://doi.org/10.1016/j.jweia.2021.104594
  • Verma, S. B., & Manisankar, C. (2017). Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation. AIAA Journal, 55(7), 2228–2240. https://doi.org/10.2514/1.J055446
  • Verma, S. B., & Manisankar, C. (2022). Separation and flow unsteadiness control in a compression corner induced interaction using mechanical vortex generators: Effects of vane size and inter-device spacing. Physics of Fluids, 34(9): Article 0096105. https://doi.org/10.1063/5.0106767
  • Wang, J. Y., Wang, T. T., Yang, M. Z., Qian, B., Zhang, L., Tian, X. D., & Shi, F. C. (2022). Research on the influence of different heating zone lengths on pressure waves and a newly designed method of pressure wave mitigation in railway tunnels. Tunnelling and Underground Space Technology, 122.https://doi.org/10.1016/j.tust.2022.104379.
  • Wang, T. T., Zhu, Y., Tian, X. D., Shi, F. C., Zhang, L., & Lu, Y. B. (2022). Design method of the variable cross-section tunnel focused on improving passenger pressure comfort of trains intersecting in the tunnel. Building and Environment, 221.https://doi.org/10.1016/j.buildenv.2022.109336.
  • Yang, G. W., Guo, D. L., Yao, S. B., & Liu, C. H. (2012). Aerodynamic design for China new high-speed trains. Science China Technological Sciences, 55(7), 1923–1928. https://doi.org/10.1007/s11431-012-4863-0
  • Yu, Y. Z., Liu, T. H., Xia, Y. T., Yang, M. Z., & Liu, H. K. (2021). Development and prospect of aerodynamic resistance-reduction technologies for trains at higher speed (400 + km/h). Acta Aerodynamica Sinica, 39(5), 83–94.
  • Zhang, L., Wang, Z. W., Wang, Q., Mo, J. L., Feng, J, & Wang, K. Y. (2023). The effect of wheel polygonal wear on temperature and vibration characteristics of a high-speed train braking system. Mechanical Systems and Signal Processing, 186. https://doi.org/10.1016/j.ymssp.2022.109864
  • Zhao, Z. Z., Jiang, R. F., Feng, J. X., Liu, H. W., Wang, T. G., Shen, W. Z., Chen, M., Wang, D. D., & Liu, Y. G. (2022). Researches on vortex generators applied to wind turbines: A review. Ocean Engineering, 253: Article 111266. https://doi.org/10.1016/j.oceaneng.2022.111266
  • Zhou, D., Wu, L. L., Tan, C. D., & Hu, T. E. (2021). Study on the effect of dimple position on drag reduction of high-speed maglev train. Transportation Safety and Environment, 3(4), tdab027. doi:10.1093/tse/tdab027