1,697
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigations of pipe flow downstream a flow conditioner with bundle of tubes

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2154850 | Received 01 Aug 2022, Accepted 29 Nov 2022, Published online: 06 Jan 2023

References

  • Akashi, K., Watanabe, H., & Koga, K. (1978). Flow rate measurement in pipe line with many bends. Mitsubishi Heavy Ind, 15(2), 87–96.
  • Arvanitis, K. D., Bouris, D., & Papanicolaou, E. (2018). Laminar flow and heat transfer in U-bends: The effect of secondary flows in ducts with partial and full curvature. International Journal of Thermal Sciences, 130, 70–93. https://doi.org/10.1016/j.ijthermalsci.2018.03.027
  • Ault, J. T., Chen, K. K., & Stone, H. A. (2015). Downstream decay of fully developed Dean flow. Journal of Fluid Mechanics, 777, 219–244. https://doi.org/10.1017/jfm.2015.353
  • Ayala, M., & Cimbala, J. M. (2021). Numerical approach for prediction of turbulent flow resistance coefficient of 90° pipe bends. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2), 351–360. https://doi.org/10.1177/0954408920964008
  • Chen, K. K., Rowley, C. W., & Stone, H. A. (2015). Vortex dynamics in a pipe T-junction: Recirculation and sensitivity. Physics of Fluids, 27(3), 034107. https://doi.org/10.1063/1.4916343
  • Dean, W. R. (1927). XVI. Note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(20), 208–223.
  • Dutta, P., Chattopadhyay, H., & Nandi, N. (2022). Numerical studies on turbulent flow field in a 90 deg pipe bend. Journal of Fluids Engineering, 144(6), 061104. https://doi.org/10.1115/1.4053547
  • Dutta, P., & Nandi, N. (2015). Effect of reynolds number and curvature ratio on single phase turbulent flow in pipe bends. Mechanics and Mechanical Engineering, 19(1), 5–16.
  • Dutta, P., Saha, S. K., Nandi, N., & Pal, N. (2016). Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ϵ modelling. Engineering Science and Technology, an International Journal, 19(2), 904–910. https://doi.org/10.1016/j.jestch.2015.12.005
  • El Drainy, Y. A., Saqr, K. M., Aly, H. S., N. Mohd, & Jaafar, M. (2009). CFD analysis of incompressible turbulent swirling flow through zanker plate. Engineering Applications of Computational Fluid Mechanics, 3(4), 562–572. https://doi.org/10.1080/19942060.2009.11015291
  • Han, F., Liu, Y., Lan, Q., Li, W., & Wang, Z. (2022b). CFD investigation on secondary flow characteristics in double-curved subsea pipelines with different spatial structures. Journal of Marine Science and Engineering, 10(9), 1264. https://doi.org/10.3390/jmse10091264
  • Han, F., Liu, Y., Ong, M. C., Yin, G., Li, W., & Wang, Z. (2022a). CFD investigation of blind-tee effects on flow mixing mechanism in subsea pipelines. Engineering Applications of Computational Fluid Mechanics, 16(1), 1395–1419. https://doi.org/10.1080/19942060.2022.2093275
  • Hellström, L. H., Zlatinov, M. B., Cao, G., & Smits, A. J. (2013). Turbulent pipe flow downstream of a bend. Journal of Fluid Mechanics, 735. https://doi.org/10.1017/jfm.2013.534
  • Hilgenstock, A., & Ernst, R. (1996). Analysis of installation effects by means of computational fluid dynamics – CFD vs experiments? Flow Measurement and Instrumentation, 7(3-4), 161–171. https://doi.org/10.1016/S0955-5986(97)88066-1
  • Jones, W. P., & Launder, B. (1973). The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 16(6), 1119–1130. https://doi.org/10.1016/0017-9310(73)90125-7
  • Jurga, A. P., Janocha, M. J., Yin, G., & Ong, M. C. (2022). Numerical simulations of turbulent flow through a 90-Deg pipe bend. Journal of Offshore Mechanics and Arctic Engineering, 144(6), 061801. https://doi.org/10.1115/1.4054960
  • Kalpakli, A., & Örlü, R. (2013). Turbulent pipe flow downstream a 90 pipe bend with and without superimposed swirl. International Journal of Heat and Fluid Flow, 41, 103–111. https://doi.org/10.1016/j.ijheatfluidflow.2013.01.003
  • Kalpakli Vester, A., Örlü, R., & Alfredsson, P. H. (2016). Turbulent flows in curved pipes: Recent advances in experiments and simulations. Applied Mechanics Reviews, 68(5). https://doi.org/10.1115/1.4034135
  • Karnik, U.. (1995, March 20–22). A compact orifice meter/flow conditioner package. In Third International Symposium on Fluid Flow Measurement, San Antonio, TX, U.S.A.
  • Kim, J., Yadav, M., & Kim, S. (2014). Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow. Engineering Applications of Computational Fluid Mechanics, 8(2), 229–239. https://doi.org/10.1080/19942060.2014.11015509
  • Laws, E. M. (1990). Flow conditioning – a new development. Flow Measurement and Instrumentation, 1(3), 165–170. https://doi.org/10.1016/0955-5986(90)90006-S
  • Liu, Z., Shao, W. Q., Sun, Y., & Sun, B. H. (2022). Scaling law of the one-direction flow characteristics of symmetric Tesla valve. Engineering Applications of Computational Fluid Mechanics, 16(1), 441–452. https://doi.org/10.1080/19942060.2021.2023648
  • Lupi, V., Canton, J., & Schlatter, P. (2020). Global stability analysis of a 90°-bend pipe flow. International Journal of Heat and Fluid Flow, 86, 108742. https://doi.org/10.1016/j.ijheatfluidflow.2020.108742
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–632.
  • Patankar, S. V., Pratap, V. S., & Spalding, D. B. (1975). Prediction of turbulent flow in curved pipes. Journal of Fluid Mechanics, 67(3), 583–595. https://doi.org/10.1017/S0022112075000481
  • Reghunathan Valsala, R., Son, S. W., Suryan, A., & Kim, H. D. (2019). Study on reduction in pressure losses in pipe bends using guide vanes. Journal of Visualization, 22(4), 795–807. https://doi.org/10.1007/s12650-019-00561-w
  • Sahin, BEŞİR, & Ceyhan, HÜSEYİN. (1996). Numerical and experimental analysis of laminar flow through square-edged orifice with variable thickness. Transactions of the Institute of Measurement and Control, 18(4), 166–174. https://doi.org/10.1177/014233129601800401
  • Sudo, K., Sumida, M., & Hibara, H. (1998). Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend. Experiments in Fluids, 25(1), 42–49. https://doi.org/10.1007/s003480050206
  • Sugiyama, H., & Hitomi, D. (2005). Numerical analysis of developing turbulent flow in a 180 bend tube by an algebraic Reynolds stress model. International Journal for Numerical Methods in Fluids, 47(12), 1431–1449. https://doi.org/10.1002/fld.818
  • Tanaka, M., & Ohshima, H. (2012). Numerical investigation on large scale eddy structure in unsteady pipe elbow flow at high Reynolds number conditions with large eddy simulation approach. Journal of Power and Energy Systems, 6(2), 210–228. https://doi.org/10.1299/jpes.6.210
  • Tanner, P., Gorman, J., & Sparrow, E. (2019). Flow–pressure drop characteristics of perforated plates. International Journal of Numerical Methods for Heat & Fluid Flow, 29(11), 4310–4333. https://doi.org/10.1108/HFF-01-2019-0065
  • Thakre, S. S., & Joshi, J. B. (2000). CFD modeling of heat transfer in turbulent pipe flows. AIChE Journal, 46(9), 1798–1812. https://doi.org/10.1002/aic.690460909
  • Tunay, T., Sahin, B., & Akilli, H. (2004). Investigation of laminar and turbulent flow through an orifice plate inserted in a pipe. Transactions of the Canadian Society for Mechanical Engineering, 28(2B), 403–414. https://doi.org/10.1139/tcsme-2004-0029
  • Wang, Z., Örlü, R., Schlatter, P., & Chung, Y. M. (2018). Direct numerical simulation of a turbulent 90 bend pipe flow. International Journal of Heat and Fluid Flow, 73, 199–208. https://doi.org/10.1016/j.ijheatfluidflow.2018.08.003
  • Wilcox, D. C. (1998). Turbulence modeling for CFD (Vol. 2, pp. 103–217). DCW industries.
  • Xiong, W., Kalkühler, K., & Merzkirch, W. (2003). Velocity and turbulence measurements downstream of flow conditioners. Flow Measurement and Instrumentation, 14(6), 249–260. https://doi.org/10.1016/S0955-5986(03)00031-1
  • Yin, G., Nitter, B., & Ong, M. C. (2021). Numerical simulations of turbulent flow through an orifice plate in a pipe. Journal of Offshore Mechanics and Arctic Engineering, 143(4). https://doi.org/10.1115/1.4049250