1,495
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study on transport phenomena and performance of proton exchange membrane fuel cell with radial flow fields

, , , , &
Article: e2156925 | Received 31 Aug 2022, Accepted 05 Dec 2022, Published online: 06 Jan 2023

References

  • Afshari, E. (2020). Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field. Journal of Thermal Analysis and Calorimetry, 139(4), 2423–2434. https://doi.org/10.1007/s10973-019-08354-x
  • Ahmadi, N., Rezazadeh, S., Dadvand, A., & Mirzaee, I. (2018). Study of the effect of Gas channels geometry on the performance of polymer electrolyte membrane fuel cell. Periodica Polytechnica-Chemical Engineering, 62(1), 97–105. https://doi.org/10.3311/PPch.9369
  • Akella, H., Ebenezer, D., Siddhardha, Sai, R. S., Ahire, A., & Mal, N. K. (2018). Studies on structure property relations of efficient decal substrates for industrial grade membrane electrode assembly development in PEMFC. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-30215-0
  • Arvay, A., French, J., Wang, J. C., Peng, X. H., & Kannan, A. M. (2013). Nature inspired flow field designs for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 38(9), 3717–3726. https://doi.org/10.1016/j.ijhydene.2012.12.149
  • Atyabi, S. A., & Afshari, E. (2019). A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields. Journal of Thermal Analysis and Calorimetry, 135(3), 1823–1833. https://doi.org/10.1007/s10973-018-7270-3
  • Bao, N., Zhou, Y. B., Zhou, Y. B., Yin, Y., Du, Q., & Chen, J. X. (2014). Effect of gas diffusion layer deformation on liquid water transport in proton exchange membrane fuel cell. Engineering Applications of Computational Fluid Mechanics, 8(1), 26–43. https://doi.org/10.1080/19942060.2014.11015495
  • Cano-Andrade, S., Hernandez-Guerrero, A., von Spakovsky, M. R., Damian-Ascencio, C. E., & Rubio-Arana, J. C. (2010). Current density and polarization curves for radial flow field patterns applied to PEMFCs (proton exchange membrane fuel cells). Energy, 35(2), 920–927. https://doi.org/10.1016/j.energy.2009.07.045
  • Choi, J., & Kim, Y. H. (2014). A note on high order Bernoulli numbers and polynomials using differential equations. Applied Mathematics and Computation, 249, 480–486. https://doi.org/10.1016/j.amc.2014.10.074
  • Chowdhury, M. Z., & Timurkutluk, B. (2018). Transport phenomena of convergent and divergent serpentine flow fields for PEMFC. Energy, 161, 104–117. https://doi.org/10.1016/j.energy.2018.07.143
  • Fontana, E., Mancusi, E., da Silva, A., Mariani, V. C., de Souza, A., & de Souza, S. (2011). Study of the effects of flow channel with non-uniform cross-sectional area on PEMFC species and heat transfer. International Journal of Heat and Mass Transfer, 54(21-22), 4462–4472. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.037
  • Friess, B. R., & Hoorfar, M. (2012). Development of a novel radial cathode flow field for PEMFC. International Journal of Hydrogen Energy, 37(9), 7719–7729. https://doi.org/10.1016/j.ijhydene.2012.02.012
  • Hashemi, F., Rowshanzamir, S., & Rezakazemi, M. (2012). CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields. Mathematical and Computer Modelling, 55(3–4), 1540–1557. https://doi.org/10.1016/j.mcm.2011.10.047
  • Hsieh, S. S., & Su, Y. W. (2014). Effects of anode and cathode perforated flow field plates on proton exchange membrane fuel cell performance. International Journal of Energy Research, 38(7), 944–953. https://doi.org/10.1002/er.3098
  • Hu, G. L., Neagu, R., Wang, Q. P., Zhang, Z. G., Li, G. N., & Zheng, Y. Q. (2012). Mathematical modelling of flow and heat/mass transfer during reactive spraying deposition technology (RSDT) process for high temperature fuel cells. Engineering Applications of Computational Fluid Mechanics, 6(1), 134–143. https://doi.org/10.1080/19942060.2012.11015409
  • Huo, S., Shi, W. Y., Wang, R. F., Lu, B. B., Wang, Y., Jiao, K., & Hou, Z. J. (2021). Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field. Science China Technological Sciences, 64(5), 1041–1056. https://doi.org/10.1007/s11431-020-1767-5
  • Iranzo, A., Arredondo, C. H., & Rosa, F. (2020). Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy, 190, 116435. https://doi.org/10.1016/j.energy.2019.116435
  • Kim, H. G. (2008). Investigation of gas flow characteristics in proton exchange membrane fuel cell. Journal of Mechanical Science and Technology, 22(8), 1561–1567. https://doi.org/10.1007/s12206-008-0318-8
  • Korkischko, I., Carmo, B. S., & Carmo, B. S. (2017). Shape optimization of PEMFC flow-channel cross-sections. Fuel Cells, 17(6), 809–815. https://doi.org/10.1002/fuce.201700168
  • Lakshminarayanan, V., & Karthikeyan, P. (2019). Investigation of PEMFC performance with various configurations of serpentine and interdigitated flow channel. Progress in Computational Fluid Dynamics, An International Journal, 19(5), 328–336. https://doi.org/10.1504/PCFD.2019.102039
  • Li, C. Y., & Liu, G. P. (2009). Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles. Journal of Power Sources, 192(2), 525–533. https://doi.org/10.1016/j.jpowsour.2009.03.007
  • Li, Y., Yang, J., & Song, J. (2017). Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles. Renewable and Sustainable Energy Reviews, 67, 160–172. https://doi.org/10.1016/j.rser.2016.09.030
  • Lim, B. H., Majlan, E. H., Daud, W. R. W., Rosli, M. I., & Husaini, T. (2020). Numerical investigation of the effect of three-dimensional modified parallel flow field designs on proton exchange membrane fuel cell performance. Chemical Engineering Science, 217, 115499. https://doi.org/10.1016/j.ces.2020.115499
  • Liu, H. J., Zhang, G. D., Li, D., Wang, C. K., Bai, S. Z., Li, G. X., & Wang, G. H. (2020). Three-dimensional multi-phase simulation of cooling patterns for proton exchange membrane fuel cell based on a modified Bruggeman equation. Applied Thermal Engineering, 174, 115313. https://doi.org/10.1016/j.applthermaleng.2020.115313
  • Nguyen, T. V. (1996). A Gas distributor design for proton-exchange-membrane fuel cells. Journal of the Electrochemical Society, 143(5), L103–L105. https://doi.org/10.1149/1.1836666
  • Perng, S. W., & Wu, H. W. (2011). Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel. Applied Energy, 88(1), 52–67. https://doi.org/10.1016/j.apenergy.2010.07.006
  • Ruan, H., Wu, C., Liu, S., & Chen, T. (2016). Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells. Heat and Mass Transfer, 52(10), 2167–2176. https://doi.org/10.1007/s00231-015-1737-6
  • Sierra, J. M., Moreira, J., & Sebastian, P. J. (2011). Numerical analysis of the effect of different gas feeding modes in a proton exchange membrane fuel cell with serpentine flow-field. Journal of Power Sources, 196(11), 5070–5076. https://doi.org/10.1016/j.jpowsour.2011.01.079
  • Solati, A., Nasiri, B., Mohammadi-Ahmar, A., Mohammadi, K., & Safari, A. H. (2019). Numerical investigation of the effect of different layers configurations on the performance of radial PEM fuel cells. Renewable Energy, 143, 1877–1889. https://doi.org/10.1016/j.renene.2019.06.003
  • Subramaniam, S., Rajaram, G., Palaniswamy, K., & Jothi, V. R. (2017). Comparison of perforated and serpentine flow fields on the performance of proton exchange membrane fuel cell. Journal of the Energy Institute, 90(3), 363–371. https://doi.org/10.1016/j.joei.2016.04.006
  • Timurkutluk, B., & Chowdhury, M. Z. (2018). Numerical investigation of convergent and divergent parallel flow fields for PEMFCs. Fuel Cells, 18(4), 441–448. https://doi.org/10.1002/fuce.201800029
  • Velisala, V., Pullagura, G., Yarramsetty, N., Vadapalli, S., Boni, M. K., & Gorantla, K. K. (2021). Three-dimensional CFD modeling of serpentine flow field configurations for PEM fuel cell performance. Arabian Journal for Science and Engineering, 46(12), 11687–11700. https://doi.org/10.1007/s13369-021-05544-4
  • Velisala, V., & Srinivasulu, G. N. (2018). Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell. Arabian Journal for Science and Engineering, 43(3), 1225–1234. https://doi.org/10.1007/s13369-017-2813-7
  • Wang, C., Zhang, Q. L., Lu, J. B., Shen, S. Y., Yan, X. H., Zhu, F. J., Cheng, X. J., & Zhang, J. L. (2017). Effect of height/width-tapered flow fields on the cell performance of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 42(36), 23107–23117. https://doi.org/10.1016/j.ijhydene.2017.07.136
  • Wang, X. D., Huang, Y. X., Cheng, C. H., Jang, J. Y., Lee, D. J., Yan, W. M., & Su, A. (2009). Flow field optimization for proton exchange membrane fuel cells with varying channel heights and widths. Electrochimica Acta, 54(23), 5522–5530. https://doi.org/10.1016/j.electacta.2009.04.051
  • Wang, X. D., Xu, J. L., Yan, W. M., Lee, D. J., & Su, A. (2011). Transient response of PEM fuel cells with parallel and interdigitated flow field designs. International Journal of Heat and Mass Transfer, 54(11–12), 2375–2386. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.024
  • Wang, Y. L., Wang, S. X., Liu, S. C., Li, H., & Zhu, K. (2020). Optimization of reactants relative humidity for high performance of polymer electrolyte membrane fuel cells with co-flow and counter-flow configurations. Energy Conversion and Management, 205, 112369. https://doi.org/10.1016/j.enconman.2019.112369
  • Xu, P., & Xu, S. C. (2017). Three-dimensional modeling of gas purge in a polymer electrolyte membrane fuel cell with co-flow and counter-flow pattern. Fuel Cells, 17(6), 794–808. https://doi.org/10.1002/fuce.201700101
  • Yuan, L., Jin, Z. L., Yang, P. H., Yang, Y. C., Wang, D. B., & Chen, X. T. (2021). Numerical analysis of the influence of different flow patterns on power and reactant transmission in tubular-shaped PEMFC. Energies, 14(8). https://doi.org/10.3390/en14082127
  • Zehtabiyan-Rezaie, N., Arefian, A., Kermani, M. J., Noughabi, A. K., & Abdollahzadeh, M. (2017). Effect of flow field with converging and diverging channels on proton exchange membrane fuel cell performance. Energy Conversion and Management, 152, 31–44. https://doi.org/10.1016/j.enconman.2017.09.009
  • Zhang, G. B., Xie, B., Bao, Z. M., Niu, Z. Q., & Jiao, K. (2018). Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. International Journal of Energy Research, 42(15), 4697–4709. https://doi.org/10.1002/er.4215
  • Zhang, G. B., Xie, X., Xie, B. A., Du, Q., & Jiao, K. (2019). Large-scale multi-phase simulation of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer, 130, 555–563. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.122
  • Zhong, D., Lin, R., Liu, D. C., & Cai, X. (2018). Structure optimization of anode parallel flow field for local starvation of proton exchange membrane fuel cell. Journal of Power Sources, 403, 1–10. https://doi.org/10.1016/j.jpowsour.2018.09.067