1,921
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of instability mechanism in the air-core vortex formation process

ORCID Icon, , , , ORCID Icon, , & show all
Article: 2156926 | Received 05 Sep 2022, Accepted 27 Nov 2022, Published online: 06 Jan 2023

References

  • Ahn, S.-H., Xiao, Y., Wang, Z., Zhou, X., & Luo, Y. (2017). Numerical prediction on the effect of free surface vortex on intake flow characteristics for tidal power station. Renewable Energy, 101, 617–628. https://doi.org/10.1016/j.renene.2016.09.021
  • Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J., & Lautrup, B. (2003). Anatomy of a bathtub vortex. Physical Review Letters, 91(10), 104502. https://doi.org/10.1103/PhysRevLett.91.104502
  • Brynjell-Rahkola, M., & Henningson, D. S. (2020). Numerical realization of helical vortices: Application to vortex instability. Theoretical and Computational Fluid Dynamics, 34(1-2), 1–20. https://doi.org/10.1007/s00162-019-00509-8
  • Burgers, J. M. (1948). A mathematical model illustrating the theory of turbulence. In R. V. Mises & T. V. Kármán (Eds.), Advances in applied mechanics (pp. 171–199). Academic Press.
  • Celik, I. B., Cehreli, Z. N., & Yavuz, I. (2005). Index of resolution quality for large eddy simulations. Journal of Fluids Engineering, 127(5), 949–958. https://doi.org/10.1115/1.1990201
  • Chang, L., & Wei, W. R. (2022). Numerical study on the effect of tangential intake on vortex dropshaft assessment using pressure distributions. Engineering Applications of Computational Fluid Mechanics, 16(1), 1100–1110. https://doi.org/10.1080/19942060.2022.2072954
  • Cristofano, L., Nobili, M., & Caruso, G. (2014). Experimental study on unstable free surface vortices and gas entrainment onset conditions. Experimental Thermal and Fluid Science, 52, 221–229. https://doi.org/10.1016/j.expthermflusci.2013.09.015
  • Del Pino, C., Lopez-Alonso, J. M., Parras, L., & Fernandez-Feria, R. (2011). Dynamics of the wing-tip vortex in the near field of a NACA 0012 aerofoil. The Aeronautical Journal, 115(1166), 229–239. https://doi.org/10.1017/S0001924000005686
  • Espinoza-Jara, A., Walczak, M., Molina, N., Jahn, W., & Brevis, W. (2022). Erosion under turbulent flow: A CFD-based simulation of near-wall turbulent impacts with experimental validation. Engineering Applications of Computational Fluid Mechanics, 16(1), 1526–1545. https://doi.org/10.1080/19942060.2022.2099978
  • Guo, Q., Huang, X., Qiu, B., Feng, X., & Luo, C. (2020). The formation of the steady and unsteady air-entrained vortices in pump sump. International Journal of Multiphase Flow, 129, 103312. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103312
  • Hecker, G. E. (2017). Fundamentals of vortex intake flow. In J. Knauss (Ed.), Swirling flow problems at intakes (pp. 13–38). Routledge.
  • Hite, J. E., & Mih, W. C. (1994). Velocity of air-core vortices at hydraulic intakes. Journal of Hydraulic Engineering, 121(8), 631–631. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:8(631)
  • Huang, X., Guo, Q., Fang, T., Chen, X., & Qiu, B. (2022). Air-entrainment in hydraulic intakes with a vertical pipe: The mechanism and influence of pipe offset. International Journal of Multiphase Flow, 146, 103866. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103866
  • Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases, 2. Proceedings of the summer program. 1 December.
  • Ji, B., Luo, X. W., Arndt, R. E. A., Peng, X., & Wu, Y. (2015). Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. International Journal of Multiphase Flow, 68, 121–134. https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.008
  • Kan, K., Chen, H., Zheng, Y., Zhou, D., Binama, M., & Dai, J. (2021). Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model. Renewable Energy, 164, 109–121. https://doi.org/10.1016/j.renene.2020.09.001
  • Kawai, S., & Larsson, J. (2012). Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy. Physics of Fluids, 24(1), 015105. https://doi.org/10.1063/1.3678331
  • Knauss, J. (2017). Swirling flow problems at intakes. Routledge.
  • Leweke, T., Le Dizès, S., & Williamson, C. H. K. (2016). Dynamics and Instabilities of Vortex Pairs. Annual Review of Fluid Mechanics, 48(1), 507–541. https://doi.org/10.1146/annurev-fluid-122414-034558
  • Li, L., Tan, D., Wang, T., Yin, Z., Fan, X., & Wang, R. (2021). Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method. Energy, 216, 119136. https://doi.org/10.1016/j.energy.2020.119136
  • Li, Z., Chen, H., Xu, H., Feng, J., Chen, Y., Shi, M., & Tong, H. (2022). Multi-objective shape optimization of siphon outlet in pumping station considering two-phase flow. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 14, 095765092211139. https://doi.org/10.1177/09576509221113920
  • Martins, F. C., Pereira, J. M. C., & Pereira, J. C. F. (2020). Vorticity transport in laminar steady rotating plumes. Physics of Fluids, 32(4), 043604. https://doi.org/10.1063/1.5145211
  • Mizushima, J., Abe, K., & Yokoyama, N. (2014). Bathtub vortex induced by instability. Physical Review E, 90(4), 4. https://doi.org/10.1103/PhysRevE.90.041002
  • Mockett, C., Fuchs, M., & Thiele, F. (2012). Progress in DES for wall-modelled LES of complex internal flows. Computers & Fluids, 65, 44–55. https://doi.org/10.1016/j.compfluid.2012.03.014
  • Möller, G. (2013). Vortex-induced air rntrainment rate at intak [PhD thesis]. ETH Zürich.
  • Möller, G., Detert, M., & Boes, R. M. (2015). Vortex-induced air entrainment rates at intakes. Journal of Hydraulic Engineering, 141(11). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001036
  • Monshizadeh, M., Tahershamsi, A., Rahimzadeh, H., & Sarkardeh, H. (2017). Comparison between hydraulic and structural based anti-vortex methods at intakes. The European Physical Journal Plus, 132(8), 329. https://doi.org/10.1140/epjp/i2017-11608-4
  • Odgaard, A. J. (1986). Free-surface air core vortex. Journal of Hydraulic Engineering, 112(7), 610–620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610)
  • Rankine, W. J. M. (1858). A manual of applied mechanics. Griffin.
  • Saleem, A. S., Cheema, T. A., Ullah, R., Ahmad, S. M., Chattha, J. A., Akbar, B., & Park, C. W. (2020). Parametric study of single-stage gravitational water vortex turbine with cylindrical basin. Energy, 200, 117464. https://doi.org/10.1016/j.energy.2020.117464
  • Schafer, R. (2011). What is a Savitzky-Golay filter? [lecture notes] IEEE Signal Processing Magazine, 28(4), 111–117. https://doi.org/10.1109/MSP.2011.941097
  • Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  • Škerlavaj, A., Škerget, L., Ravnik, J., & Lipej, A. (2014). Predicting free-surface vortices with single-phase simulations. Engineering Applications of Computational Fluid Mechanics, 8(2), 193–210. https://doi.org/10.1080/19942060.2014.11015507
  • Suerich-Gulick, F., Gaskin, S. J., Villeneuve, M., & Parkinson, É. (2014). Free surface intake vortices: Scale effects due to surface tension and viscosity. Journal of Hydraulic Research, 52(4), 513–522. https://doi.org/10.1080/00221686.2014.905503
  • Sun, X., Li, W. X., Huang, Q. Y., Zhang, J., & Sun, C. C. (2020). Large eddy simulations of wind loads on an external floating-roof tank. Engineering Applications of Computational Fluid Mechanics, 14(1), 422–435. https://doi.org/10.1080/19942060.2020.1718757
  • Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1), 146–159. https://doi.org/10.1006/jcph.1994.1155
  • Tyliszczak, A., Boguslawski, A., & Nowak, D. (2016). Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system. Applied Energy, 174, 153–165. https://doi.org/10.1016/j.apenergy.2016.04.106
  • White, E. B., & Saric, W. S. (2005). Secondary instability of crossflow vortices. Journal of Fluid Mechanics, 525, 275–308. https://doi.org/10.1017/S002211200400268X
  • Wojcik, C. J., & Buchholz, J. H. J. (2014). Vorticity transport in the leading-edge vortex on a rotating blade. Journal of Fluid Mechanics, 743, 249–261. https://doi.org/10.1017/jfm.2014.18
  • Wu, P., Horna Munoz, D., Constantinescu, G., & Qian, Z. (2019). Two-phase flow DES and URANS simulations of pump-intake bay vortices. Journal of Hydraulic Research, 58(1), 120–132. https://doi.org/10.1080/00221686.2018.1555552
  • Yang, J., Liu, T., Bottacin-Busolin, A., & Lin, C. (2014). Effects of intake-entrance profiles on free-surface vortices. Journal of Hydraulic Research, 52(4), 523–531. https://doi.org/10.1080/00221686.2014.905504
  • Zi, D., Wang, F., Wang, C., Huang, C., & Shen, L. (2021). Investigation on the air-core vortex in a vertical hydraulic intake system. Renewable Energy, 177, 1333–1345. https://doi.org/10.1016/j.renene.2021.06.062
  • Zi, D., Xuan, A., Wang, F., & Shen, L. (2020). Numerical study of mechanisms of air-core vortex evolution in an intake flow. International Journal of Heat and Fluid Flow, 81, 108517. https://doi.org/10.1016/j.ijheatfluidflow.2019.108517