1,419
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A study on the cavitating flow around an elliptical disk-shaped cavitator for non-body-of-revolution underwater vehicles

ORCID Icon, ORCID Icon, ORCID Icon, &
Article: 2159882 | Received 08 Sep 2022, Accepted 13 Dec 2022, Published online: 06 Jan 2023

References

  • Ahn, B. K., Jeong, S., Kim, J., Shao, S., Hong, J., & Arndt, R. E. (2017). An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators. International Journal of Naval Architecture and Ocean Engineering, 9(2), 227–237. https://doi.org/10.1016/j.ijnaoe.2016.10.006
  • Cao, L., Karn, A., Arndt, R., Wang, Z., & Hong J. (2017). Numerical investigations of pressure distribution inside a ventilated supercavity. Journal of Fluids Engineering, 139(2), 021301. https://doi.org/10.1115/1.4035027
  • Chen, G., Shao, Q., Sun, T., & Lv, P. (2020). An experimental comparison of ventilated supercavitation with disk-shaped cavitators and elliptical disk-shaped cavitators. 2020 International Conference on System Science and Engineering (ICSSE).
  • Chen, X., Lu, C., Chen, Y., & Cao, J. (2014). A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle. Journal of Hydrodynamics, 26(5), 697–705. https://doi.org/10.1016/S1001-6058(14)60078-0
  • Choi, J., & Kim, H. (2021). A study on practical method to estimate drag of super-cavitating underwater vehicles. International Journal of Naval Architecture and Ocean Engineering, 13, 817–832. https://doi.org/10.1016/j.ijnaoe.2021.10.007
  • Delaney, K. P. (2013). Computational methods in applied sciences. Computational Methods in Applied Sciences, 29, 171–184. https://doi.org/10.1007/978-94-007-6143-8_10
  • Deng, F., Xiong, W., Zhou, J., Zheng, D., Su X., & Tang, Y. (2019). Experimental study on morphological characteristics of ventilated supercavity of double disc cavitator projectile. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 37(1), 7. (in Chinese). https://doi.org/10.1051/jnwpu/20193710093
  • Erfanian, M. R., & Anbarsooz, M. (2018). Numerical investigation of body and hole effects on the cavitating flow behind a disk cavitator at extremely low cavitation numbers. Applied Mathematical Modelling, 62, 163–180. https://doi.org/10.1016/j.apm.2018.05.026
  • Fard, M. B., & Nikseresht, A. H. (2012). Numerical simulation of unsteady 3D cavitating flows over axisymmetric cavitators. Scientia Iranica, 19(5), 1258–1264. https://doi.org/10.1016/j.scient.2012.07.013
  • Gieseke, T. J. (2011). Telescoping cavitator. U.S. Patent, US20090383081.
  • Hu, X., Hu, Z., & Peng, H. (2017). Numerical research on shape of supercavity induced by the variable cavitator. Chinese Journal of Hydrodynamics, 32(2), 10. (in Chinese). https://doi.org/10.16076/j.cnki.cjhd.2017.02.010
  • Huang, C., Luo, K., Qin, K., Li, D., & Dang, J. (2020). Performance comparison of bow and stern rudder for high-speed supercavitating vehicles. Mathematical Problems in Engineering, 8630842. https://doi.org/10.1155/2020/8630842
  • Ji, B., Luo, X., Peng, X., Zhang, Y., Wu, Y., & Xu, H. (2010). Numerical investigation of the ventilated cavitating flow around an underwater vehicle based on a three-component cavitation model. Journal of Hydrodynamics, 22(6), 753–759. https://doi.org/10.1016/S1001-6058(09)60113-X
  • Jiang, Y., Jeong, S., Ahn, B., Kim, H., & Jung, Y. (2019). Experimental investigation of drag characteristics of ventilated supercavitating vehicles with different body shapes. Physics of Fluids, 31(5), 0052106. https://doi.org/10.1063/1.5092542
  • Kadivar, E., Kadivar, E., Javadi, K., & Javadpour S. M. (2017). The investigation of natural supercavitation flow behind three-dimensional cavitators: Full cavitation model. Applied Mathematical Modelling, 45, 165–178. https://doi.org/10.1016/j.apm.2016.12.017
  • Kim, D. H., Paramanantham, S., & Park, W. G. (2020). Numerical analysis of multi-phase flow around supercavitating body at various cavitator angle of attack and ventilation mass flux. Applied Sciences, 10(12), 4228. https://doi.org/10.3390/app10124228
  • Klamo, J. T., Yeager, K. I., Cool, C. Y., Turner, T. M., & Kown, Y. W. (2021). The effects of cross-sectional geometry on wave-induced loads for underwater vehicles. IEEE Journal of Oceanic Engineering, 46(3), 765–784. https://doi.org/10.1109/JOE.2020.3023320
  • Kuklinski, R. (2006). Experimental studies in the control of cavitating Bodies. AIAA Guidance, Navigation, and Control Conference and Exhibit, 6443.
  • Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T. R. (2000). A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29(8), 849–875. https://doi.org/10.1016/S0045-7930(99)00039-0
  • Lee, S., Paik, B., Kim, K., Jung, Y., Kim, M., & Arndt, R. (2018). On axial deformation of ventilated supercavities in closed-wall tunnel experiments. Experimental Thermal and Fluid Science, 96, 321–328. https://doi.org/10.1016/j.exptherm-flusci.2018.03.014
  • Li, D., Liu, S., Wei, Y., Liang, R., & Tang, Y. (2018). Numerical investigation on transient internal cavitating flow and spray characteristics in a single-hole diesel injector nozzle: A 3D method for cavitation-induced primary break-up. Fuel, 233, 778–795. https://doi.org/10.1016/j.fuel.2018.06.103
  • Li, F., & Dang, J. (2016). Hydrodynamic characteristics of conical cavitator with fins. Torpedo Technology, 24(3), 172–177. in Chinese. https://doi.org/10.11993/j.issn.1673-1948.2016.03.003
  • Mansour, M. Y., Mansour, M. H., & Mostafa, N. H. (2020). Numerical and experimental investigation of supercavitating flow development over different nose shape projectiles. IEEE Journal of Oceanic Engineering, 45(4), 1370–1385. https://doi.org/10.1109/JOE.2019.2910644
  • Nesteruk, I. (2014). Shape of slender axisymmetric ventilated supercavities. Journal of Computational Engineering, 501590. https://doi.org/10.1155/2014/501590
  • Pendar, M. R., & Roohi, E. (2016). Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models. Ocean Engineering, 112, 287–306. https://doi.org/10.1016/j.oceaneng.2015.12.010
  • Petitpas, F., Saurel, R., Ahn, B. K., & Ko, S. (2011). Modelling cavitating flow around underwater missiles. International Journal of Naval Architecture and Ocean Engineering, 3(4), 263–273. https://doi.org/10.3744/JNAOE.2011.3.4.263
  • Qin, S., Wu, Y., Wu, D., & Hong, J. (2019). Experimental investigation of ventilated partial cavitation. International Journal of Multiphase Flow, 113, 153–164. https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.007
  • Rashidi, I., Pasandideh, M., Passandideh, M., & Nouri, N. M. (2014). Numerical and experimental study of a ventilated supercavitating vehicle. Journal of Fluids Engineering, 136(10), 101301. https://doi.org/10.1115/1.4027383
  • Savchenko, Y. N. (2001). Supercavitation-problems and perspectives. The 4th International Symposium on Cavitation, 20–23. https://resolver.caltech.edu/CAV2001:lecture.003.
  • Savchenko, Y. N., Semenenko, V. N., & Savchenko, G. Y. (2019). Peculiarities of supercavitating vehicles’ maneuvering. International Journal of Fluid Mechanics Research, 46(4), 309–323. https://doi.org/10.1615/InterJFluidMechRes.v46.i4.30
  • Sun, T., Chen, G., Yang, S., Wang, Y., Wang, Y., Tan, H., & Zhang, L. (2021a). Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology. Engineering Applications of Computational Fluid Mechanics, 15(1), 1057–1074. https://doi.org/10.1080/19942060.2021.1940287
  • Sun, T., Ding, Y., Liu, Y., & Zou, L. (2021b). Numerical modeling and investigation of the effect of internal waves on the dynamic behavior of an asymmetric ventilated supercavity. Ocean Engineering, 233(2), 109193. https://doi.org/10.1016/j.oceaneng.2021.109193
  • Wu, Y., Liu, Y., Shao, S., & Hong, J. (2019). On the internal flow of a ventilated supercavity. Journal of Fluid Mechanics, 862, 1135–1165. https://doi.org/10.1017/jfm.2018.1006
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. https://doi.org/10.1063/1.858424
  • Zhang, M., Tan, J., Yi, W., & Liao, X. (2016). Large eddy simulation analysis on effect of cavitator parameter on supercavity primary position. Journal of Ballistics, 28(1), 87–91. https://doi.org/10.3969/j.issn.1004-499X.2016.01.016
  • Zhang, X., Wei, Y., Zhang, J., Wang, C., & Yu, K. (2007). Experimental research on the shape characters of natural and ventilated supercavitation. Journal of Hydrodynamics, 19(5), 564–571. https://doi.org/10.1016/S1001-6058(07)60154-1
  • Zou, W., & Zhang, X. (2021). Shear layer on a ventilated supercavity wall. International Journal of Multiphase Flow, 135, 103504. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103504