2,064
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of jet impingement relaminarization using nonlinear eddy viscosity turbulence models

&
Article: e2162132 | Received 15 Oct 2022, Accepted 19 Dec 2022, Published online: 06 Jan 2023

References

  • Aillaud, P., Duchaine, F., Gicquel, L. Y. M., & Didorally, S. (2016). Secondary peak in the Nusselt number distribution of impinging jet flows: A phenomenological analysis. Physics of Fluids, 28(9), https://doi.org/10.1063/1.4963687
  • ANSYS Inc. (2021). ANSYS Fluent V2F Turbulence model manual. 15317(January).
  • Attalla, M. (2015). Stagnation region heat transfer for circular jets impinging on a flat plate. Experimental Heat Transfer, 28(2), 139–155. https://doi.org/10.1080/08916152.2013.829134
  • Bader, P., Pieringer, P., & Sanz, W. (2017). On the capability of transition models to predict relaminarization. 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017. https://doi.org/10.29008/etc2017-328
  • Bader, P., & Sanz, W. (2017). On boundary layer relaminarization in an highly accelerated high pressure turbine stator flow. Proceedings of the ASME Turbo Expo, 2B-2017, V02BT41A009. https://doi.org/10.1115/GT2017-63296.
  • Baughn, J. W., Hechanova, A. E., & Yan, X. (1991). An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. Journal of Heat Transfer, 113(4), 1023–1025. https://doi.org/10.1115/1.2911197
  • Cademartori, S., Cravero, C., Marini, M., & Marsano, D. (2021). CFD simulation of the slot jet impingement heat transfer process and application to a temperature control system for galvanizing line of metal band. Applied Sciences, 11(3), 1149–1123. https://doi.org/10.3390/app11031149
  • Chen, K., Xu, R., & Jiang, P. (2018). Experimental study of jet impingement cooling with carbon dioxide at supercritical pressures on micro structured surfaces. The Journal of Supercritical Fluids, 139, 45–52. https://doi.org/10.1016/j.supflu.2018.05.002
  • Chen, Y. J., & Chen, Z. S. (2022). A prediction model of wall shear stress for ultra-high-pressure water-jet nozzle based on hybrid BP neural network. Engineering Applications of Computational Fluid Mechanics, 16(1), 1902–1920. https://doi.org/10.1080/19942060.2022.2123404
  • Cooper, D., Jackson, D. C., Launder, B. E., & Liao, G. X. (1993). Impinging jet studies for turbulence model assessment—I. Flow-field experiments. International Journal of Heat and Mass Transfer, 36(10), 2675–2684. https://doi.org/10.1016/S0017-9310(05)80204-2
  • Cousteix, J. (2003). Aircraft aerodynamic boundary layers. In Encyclopedia of physical science and technology (pp. 301–317). Elsevier. https://doi.org/10.1016/b0-12-227410-5/00906-6
  • Das, S., Biswas, A., & Das, B. (2022). Numerical analysis of a solar Air heater With Jet impingement—comparison of performance between Jet designs. Journal of Solar Energy Engineering, 144(1), https://doi.org/10.1115/1.4051478
  • Dewan, A., Dutta, R., & Srinivasan, B. (2012). Recent trends in computation of turbulent jet impingement heat transfer. Heat Transfer Engineering, 33(4–5), 447–460. https://doi.org/10.1080/01457632.2012.614154
  • Dey, S., Ravi Kishore, G., Castro-Orgaz, O., & Ali, S. Z. (2018). Reynolds stress in submerged turbulent plane offset jets: Mathematical model. Journal of Engineering Mechanics, 144(6), 06018001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001456
  • Ekkad, S. V., & Singh, P. (2021). A modern review on jet impingement heat transfer methods. Journal of Heat Transfer, 143(6), https://doi.org/10.1115/1.4049496
  • Erasmus, D. J., Lubkoll, M., & von Backström, T. W. (2021). Jet impingement heat transfer within a hemisphere. Heat and Mass Transfer, 57(6), 931–948. https://doi.org/10.1007/s00231-020-02977-9
  • Fenot, M., Vullierme, J.-J., & Dorignac, E. (2005). Local heat transfer due to several configurations of circular air jets impinging on a flat plate with and without semi-confinement. International Journal of Thermal Sciences, 44(7), 665–675. https://doi.org/10.1016/j.ijthermalsci.2004.12.002
  • Gao, F. D., Wang, D. X., Wang, H. D., & Jia, M. M. (2018). Numerical analysis and verification of the gas jet from aircraft engines impacting a jet blast deflector. Chinese Journal of Mechanical Engineering, 31(1), https://doi.org/10.1186/s10033-018-0285-7
  • Gibson, M. M., & Launder, B. E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 86(3), 491–511. https://doi.org/10.1017/S0022112078001251
  • Grenson, P., & Deniau, H. (2017). Large-Eddy simulation of an impinging heated jet for a small nozzle-to-plate distance and high reynolds number. International Journal of Heat and Fluid Flow, 68, 348–363. https://doi.org/10.1016/j.ijheatfluidflow.2017.09.014
  • Hee Lee, D., Youl Won, S., Taek Kim, Y., & Suk Chung, Y. (2002). Turbulent heat transfer from a flat surface to a swirling round impinging jet. International Journal of Heat and Mass Transfer, 45(1), 223–227. https://doi.org/10.1016/S0017-9310(01)00135-1
  • Huang, H., Sun, T., Zhang, G., Sun, L., & Zong, Z. (2018). Modeling and computation of turbulent slot jet impingement heat transfer using RANS method with special emphasis on the developed SST turbulence model. International Journal of Heat and Mass Transfer, 126, 589–602. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.121
  • Ichimiya, M. (1999). The effect of a single roughness element on a flat plate boundary layer transition. In Engineering turbulence modelling and experiments 4 (pp. 597–606). Elsevier. https://doi.org/10.1016/B978-008043328-8/50057-6
  • Issac, J., Singh, D., & Kango, S. (2020). Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate. Heat and Mass Transfer, 56(2), 531–546. https://doi.org/10.1007/s00231-019-02724-9
  • Kalifa, R. B., Habli, S., Saïd, N. M., Bournot, H., & Palec, G. L. (2016). The effect of coflows on a turbulent jet impacting on a plate. Applied Mathematical Modelling, 40(11–12), 5942–5963. https://doi.org/10.1016/j.apm.2016.01.037
  • Khalaji, E., Nazari, M. R., & Seifi, Z. (2016). 2D numerical simulation of impinging jet to the flat surface by k−ω−−f turbulence model. Heat and Mass Transfer, 52(1), 127–140. https://doi.org/10.1007/s00231-015-1688-y
  • Kura, T., Fornalik-Wajs, E., Wajs, J., & Kenjeres, S. (2021). Curved surface minijet impingement phenomena analysed with ζ-f turbulence model. Energies, 14(7), https://doi.org/10.3390/en14071846
  • Lar-Kermani, E., Roohi, E., & Porte-Agel, F. (2018). Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM. Journal of Turbulence, 19(7), 600–620. https://doi.org/10.1080/14685248.2018.1483078
  • Launder, B. E. (1989). Second-moment closure and its use in modelling turbulent industrial flows. International Journal for Numerical Methods in Fluids, 9(8), 963–985. https://doi.org/10.1002/fld.1650090806
  • Leocadio, H., & Passos, J. C. (2021). Experimental investigation of heat transfer characteristics during water jet impingement cooling of a high-temperature steel surface. Ironmaking & Steelmaking, 48(7), 819–832. https://doi.org/10.1080/03019233.2021.1872467
  • Liu, B., Pan, Y., & Ma, F. (2020). Pulse pressure loading and erosion pattern of cavitating jet. Engineering Applications of Computational Fluid Mechanics, 14(1), 136–150. https://doi.org/10.1080/19942060.2019.1695675
  • Mehta, Y., Natarajan, K., Gustavsson, J., & Kumar, R. (2021). An experimental investigation into the effect of nozzle spacing in supersonic twin jets. AIAA Scitech 2021 Forum, 1–19. https://doi.org/10.2514/6.2021-1293.
  • Pakhomov, M. A., & Terekhov, V. I. (2020). RANS simulation of the effect of pulse form on fluid flow and convective heat transfer in an intermittent round jet impingement. Energies, 13(15), https://doi.org/10.3390/en13154025
  • Panda, J. P. (2019). A review of pressure strain correlation modeling for reynolds stress models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(8), 1528–1544. https://doi.org/10.1177/0954406219893397
  • Radmard, V., Hadad, Y., Azizi, A., Rangarajan, S., Hoang, C. H., Arvin, C., Sikka, K., Schiffres, S. N., & Sammakia, B. (2020). Direct Micro-Pin Jet Impingement Cooling for High Heat Flux Applications. 36th Annual Semiconductor Thermal Measurement, Modeling and Management Symposium, SEMI-THERM 2020 - Proceedings, 91–96. https://doi.org/10.23919/SEMI-THERM50369.2020.9142864.
  • Rane, S., & He, L. (2020). CFD analysis of flashing flow in two-phase geothermal turbine design. Journal of Computational Design and Engineering, 7(2), 238–250. https://doi.org/10.1093/JCDE/QWAA020
  • Shademan, M., Balachandar, R., Roussinova, V., & Barron, R. (2016). Round impinging jets with relatively large stand-off distance. Physics of Fluids, 28(7), https://doi.org/10.1063/1.4955167
  • Singh, T. P., Kumar, A., & Satapathy, A. K. (2020). Fluid flow analysis of a turbulent offset jet impinging on a wavy wall surface. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(2), 544–563. https://doi.org/10.1177/0954406219880209
  • Speziale, C. G., Sarkar, S., & Gatski, T. B. (1991). Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach. Journal of Fluid Mechanics, 227, 245–272. https://doi.org/10.1017/S0022112091000101
  • Steinberg, C., Liu, M., & Hung, D. L. S. (2022). A combined experimental–numerical study towards the elucidation of spray–wall interaction on step geometries. Engineering Applications of Computational Fluid Mechanics, 16(1), 1866–1882. https://doi.org/10.1080/19942060.2022.2098828
  • Ting, D. D. S.-K. (2016). Turbulence Scales. Basics of Engineering Turbulence, 69–98. https://doi.org/10.1016/B978-0-12-803970-0.00004-0
  • Ul Haq, U., Ahmed, A., Mustansar, Z., Shaukat, A., Cukovic, S., Nadeem, F., Talay, S., Iqbal Khan, M. J., & Margetts, L. (2022). Computational modeling and simulation of stenosis of the cerebral aqueduct due to brain tumor. Engineering Applications of Computational Fluid Mechanics, 16(1), 1018–1030. https://doi.org/10.1080/19942060.2022.2056511
  • Xing, C., Le, G., & Deng, H. (2022). Numerical study on jet noise suppression with water injection during one-nozzle launch vehicle lift-off. Engineering Applications of Computational Fluid Mechanics, 16(1), 1173–1194. https://doi.org/10.1080/19942060.2022.2072953
  • Zahiri, A. P., & Roohi, E. (2019). Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: Verification and assessment in single-phase and multi-phase flows. Computers & Fluids, 180(C), 190–205. https://doi.org/10.1016/j.compfluid.2018.12.011
  • Zahiri, A. P., & Roohi, E. (2021). Assessment of anisotropic minimum-dissipation (AMD) subgrid-scale model: Gently-curved backward-facing step flow. International Journal of Modern Physics C, 32(05), 2150068. https://doi.org/10.1142/S0129183121500686
  • Zhang, F., & Wang, S. (2020). Numerical analysis for jet impingement and heat transfer Law of self-excited pulsed nozzle. ISIJ International, 60(11), 2485–2492. https://doi.org/10.2355/isijinternational.ISIJINT-2020-001
  • Zhang, G., Huang, H., Sun, T., Li, N., Zhou, B., & Sun, Z. (2019). Analysis of the performance of a new developed shear stress transport model in a turbulent impinging jet flow. Physics of Fluids, 31(11), 115110. https://doi.org/10.1063/1.5118675
  • Zhou, F., Jung, K. W., Fukuoka, Y., & Dede, E. M. (2018). Chip-scale cooling of power semiconductor devices: Fabrication of Jet impingement design. Proceedings of the International Symposium on Power Semiconductor Devices and ICs, 2018-May, 516–519. https://doi.org/10.1109/ISPSD.2018.8393716
  • Zhou, Z., Bao, Y., Sun, P., & Li, Y. (2022). Cooling of rocket plume using aqueous jets during launching. Engineering Applications of Computational Fluid Mechanics, 16(1), 20–35. https://doi.org/10.1080/19942060.2021.2004926
  • Zuckerman, N., & Lior, N. (2006). Jet impingement heat transfer: Physics, correlations, and numerical modeling. Advances in Heat Transfer, 39(C), 565–631. https://doi.org/10.1016/S0065-2717(06)39006-5