1,548
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational study of free surface film flow and subsequent disintegration of a sheet and ligaments into droplets from a rotary disk atomizer

, , , &
Article: 2162971 | Received 15 Sep 2022, Accepted 21 Dec 2022, Published online: 19 Jan 2023

References

  • ANSYS Inc. (US). (2020). ANSYS Fluent theory guide, release2020R1. In ANSYS Fluent theory guide.
  • Appelquist, E., Schlatter, P., Alfredsson, P. H., & Lingwood, R. J. (2018). Turbulence in the rotating-disk boundary layer investigated through direct numerical simulations. European Journal of Mechanics, B/Fluids, 70, 6–18. https://doi.org/10.1016/j.euromechflu.2018.01.008
  • Bhatelia, T. J., Utikar, R. P., Pareek, V. K., & Tade, M. O. (2009, December 9–11). Characterizing liquid film thickness in spinning disc reactors. In Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
  • Bizjan, B., Širok, B., Hočevar, M., & Orbanić, A. (2014). Liquid ligament formation dynamics on a spinning wheel. Chemical Engineering Science, 119, 187–198. https://doi.org/10.1016/j.ces.2014.08.031
  • Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
  • Brauer, H. (1958). Stoffaustausch beim rieselfilm. Chemie Ingenieur Technik, 30(2), 75–84. https://doi.org/10.1002/cite.330300205
  • Bristot, A., Morvan, H. P., & Simmons, K. A. (2016, June 13–17). Evaluation of a volume of fluid CFD methodology for the oil film thickness estimation in an aero-engine bearing chamber. In Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea (pp. 1–11).
  • Burns, J. R., Ramshaw, C., & Jachuck, R. J. (2003). Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique. Chemical Engineering Science, 58(11), 2245–2253. https://doi.org/10.1016/S0009-2509(03)00091-5
  • Cageao, P. P., Johnson, K., Ambrose, S., & Omar, R. (2022, June 13–17). GT2022-82195 experimental investigation into oil shedding from a rotating cup geometry. In Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition GT2022, Rotterdam, Netherlands, GT2022-82195, 1–14. https://nottingham-repository.worktribe.com/output/7733321
  • Charwat, A. F., Kelly, R. E., & Gazley, C. (1972). The flow and stability of thin liquid films on a rotating disk. Journal of Fluid Mechanics, 53(2), 227–255. https://doi.org/10.1017/S0022112072000138
  • Coquart, L., Sipp, D., & Jacquin, L. (2005). Mixing induced by Rayleigh-Taylor instability in a vortex. Physics of Fluids, 17(2), 1–4. https://doi.org/10.1063/1.1852580
  • Egorov, Y. (2004). Validation of CFD codes with PTS-relevant test cases EVOLECORA-D07.
  • Espig, H., & Hoyle, R. (1965). Waves in a thin liquid layer on a rotating disk. Journal of Fluid Mechanics, 22(4), 671–677. https://doi.org/10.1017/S0022112065001052
  • Fraser, R. P., Dombrowski, N., & Routley, J. H. (1963). The filming of liquids by spinning cups. Chemical Engineering Science, 18(6), 323–337. https://doi.org/10.1016/0009-2509(63)80026-3
  • Frost, A. R. (1981). Rotary atomization in the ligament formation mode. Journal of Agricultural Engineering Research, 26(1), 63–78. https://doi.org/10.1016/0021-8634(81)90127-X
  • Gibbs Inteaz Alli, F., Mulligan, C. N., & Bernard, S. K. (1999). Encapsulation in the food industry: A review. International Journal of Food Sciences and Nutrition, 50(3), 213–224. https://doi.org/10.1080/096374899101256
  • Glahn, A., Busam, S., Blair, M. F., Allard, K. L., & Wittig, S. (2002). Droplet generation by disintegration of oil films at the rim of a rotating disk. Journal of Engineering for Gas Turbines and Power, 124(1), 117–124. https://doi.org/10.1115/1.1400753
  • Hinze, J. O., & Milborn, H. (1950). Atomization of liquids by means of a rotating cup. Journal of Applied Mechanics, 17(2), 145–153. https://doi.org/10.1115/1.4010093
  • Imayama, S., Henrik Alfredsson, P., & Lingwood, R. J. (2013). An experimental study of edge effects on rotating-disk transition. Journal of Fluid Mechanics, 716, 638–657. https://doi.org/10.1017/jfm.2012.564
  • Kheyfets, V. O., & Kieweg, S. L. (2013). Experimental and numerical models of three-dimensional gravity-driven flow of shear-thinning polymer solutions used in vaginal delivery of microbicides. Journal of Biomechanical Engineering, 135(6), 061009. https://doi.org/10.1115/1.4024140
  • Lee, J., Lee, H., Park, H., Cho, G. H., Kim, D., & Cho, J. (2021). Design optimization of a vane type pre-swirl nozzle. Engineering Applications of Computational Fluid Mechanics, 15(1), 164–179. https://doi.org/10.1080/19942060.2020.1847199
  • Lepehin, G. I., & Riabchuk, G. V. (1975). Temperature distribution in film of viscous liquid with heating on a rotating disk. Rheology in Processes and Apparatus of Chemical Technology, 82, 82–91.
  • Liu, G., Gong, W., Wu, H., & Lin, A. (2021). Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine. Engineering Applications of Computational Fluid Mechanics, 15(1), 476–489. https://doi.org/10.1080/19942060.2021.1884600
  • Liu, J., Yu, Q., & Guo, Q. (2012). Experimental investigation of liquid disintegration by rotary cups. Chemical Engineering Science, 73, 44–50. https://doi.org/10.1016/j.ces.2012.01.010
  • Mantripragada, V. T., & Sarkar, S. (2017). Prediction of drop size from liquid film thickness during rotary disc atomization process. Chemical Engineering Science, 158 (June 2016), 227–233. https://doi.org/10.1016/j.ces.2016.10.027
  • Nicoli, A., Singh, K., Jefferson-loveday, R., Ambrose, S., & Mouvanal, S. (2022, June 13–17). Numerical simulation of multi-scale oil film on a rotating cup using VOF and coupled Eulerian thin-film-DPM approaches. In Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition GT2022, Rotterdam, Netherlands, GT2022-82533, 1–13.
  • Pan, Y., Witt, P. J., & Xie, D. (2010). CFD simulation of free surface flow and heat transfer of liquid slag on a spinning disc for a novel dry slag granulation process. Progress in Computational Fluid Dynamics, An International Journal, 10(5/6), 292. https://doi.org/10.1504/pcfd.2010.035362
  • Rauscher, J. W., Kelly, R. E., & Cole, J. D. (1973). An asymptotic solution for the laminar flow of a thin film on a rotating disk. Journal of Applied Mechanics, 40(1), 43–47. https://doi.org/10.1115/1.3422970
  • Rice, J., Faghri, A., & Cetegen, B. (2005). Analysis of a free surface film from a controlled liquid impinging jet over a rotating disk including conjugate effects, with and without evaporation. International Journal of Heat and Mass Transfer, 48(25–26), 5192–5204. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.022
  • Sun, H., Chen, G., Wang, L., & Wang, F. (2015). Ligament and droplet generation by oil film on a rotating disk. International Journal of Aerospace Engineering, 2015, 1–14. https://doi.org/10.1155/2015/769862
  • Turkyilmazoglu, M. (2019). Direct contact melting due to a permeable rotating disk. Physics of Fluids, 31(2), 023603. https://doi.org/10.1063/1.5086724
  • Turkyilmazoglu, M. (2022). Flow and heat over a rotating disk subject to a uniform horizontal magnetic field. Zeitschrift Fur Naturforschung – Section A Journal of Physical Sciences, 77(4), 329–337. https://doi.org/10.1515/zna-2021-0350
  • Wang, D., Jin, H., Ling, X., Peng, H., Yu, J., & Cui, Z. (2020). Regulation of velocity zoning behaviour and hydraulic jump of impinging jet flow on a spinning disk reactor. Chemical Engineering Journal, 390(1800), 124392. https://doi.org/10.1016/j.cej.2020.124392
  • Wang, D., Ling, X., & Peng, H. (2014). Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag. Applied Thermal Engineering, 63(1), 387–395. https://doi.org/10.1016/j.applthermaleng.2013.11.033
  • Wang, D., Ling, X., & Peng, H. (2015). Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process. Applied Thermal Engineering, 84, 437–447. https://doi.org/10.1016/j.applthermaleng.2015.03.003
  • Wang, D., Ling, X., Peng, H., Cui, Z., & Yang, X. (2016). Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge. Industrial & Engineering Chemistry Research, 55(34), 9267–9275. https://doi.org/10.1021/acs.iecr.6b01428
  • Woods, W. P. (1995). The hydrodynamics of thin liquid films flowing over a rotating disc. University of Newcastle.
  • Wu, J. J., Wang, H., Zhu, X., Liao, Q., & Ding, B. (2015). Centrifugal granulation performance of liquid with various viscosities for heat recovery of blast furnace slag. Applied Thermal Engineering, 89, 494–504. https://doi.org/10.1016/j.applthermaleng.2015.06.031
  • Yuan, H., Peng, H., He, X., Chen, L., & Zhou, J. (2021). Double droplet splashing on a thin liquid film with a pseudopotential lattice Boltzmann method. Engineering Applications of Computational Fluid Mechanics, 15(1), 964–984. https://doi.org/10.1080/19942060.2021.1934547