1,238
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of air admission influence on the precessing vortex rope in a Francis turbine

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2164619 | Received 07 Sep 2022, Accepted 28 Dec 2022, Published online: 13 Jan 2023

References

  • Altimemy, M., Attiya, B., Daskiran, C., Liu, I. H., & Oztekin, A. (2019). Mitigation of flow-induced pressure fluctuations in a Francis turbine operating at the design and partial load regimes—LES simulations. International Journal of Heat and Fluid Flow, 79, 108444. https://doi.org/10.1016/j.ijheatfluidflow.2019.108444
  • Bosioc, A. I., Susan-Resiga, R., Muntean, S., & Tanasa, C. (2012). Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone. Journal of Fluids Engineering, 134(8), 081104. https://doi.org/10.1115/1.4007074
  • Botan, A. C. B., Camacho, R., Tiago Filho, R. G., & C, G. L., Botan, O., & C, M. (2021). Comparative analysis for distributed generation using ultra-low head hydro, solar and wind energies. International Journal of Energy Research, 45(11), 16310–16328. https://doi.org/10.1002/er.6877
  • Bunea, F., Ciocan, G. D., Bucur, D. M., Dunca, G., & Nedelcu, A. (2021). Hydraulic turbine performance assessment with implementation of an innovative aeration system. Water, 13(18), 2459. https://www.mdpi.com/2073-4441/13/18/2459. https://doi.org/10.3390/w13182459
  • Cheng, H., Long, X., Ji, B., Peng, X., & Farhat, M. (2021). A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. International Journal of Multiphase Flow, 134, 103441. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103441
  • Commission, I. E. (1999). IEC 60193: 1999, Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests Geneva, Switzerland.
  • Diab, G., Elhakeem, M., & Sattar, A. M. A. (2022). Performance assessment of lift-based turbine for small-scale power generation in water pipelines using OpenFOAM. Engineering Applications of Computational Fluid Mechanics, 16(1), 536–550. https://doi.org/10.1080/19942060.2021.2019129
  • Duparchy, F., Favrel, A., Lowys, P. Y., Landry, C., Müller, A., Yamamoto, K., & Avellan, F. (2015). Analysis of the part load helical vortex rope of a Francis turbine using on-board sensors. Journal of Physics: Conference Series, 656, 012061. https://doi.org/10.1088/1742-6596/656/1/012061
  • Espinoza-Jara, A., Walczak, M., Molina, N., Jahn, W., & Brevis, W. (2022). Erosion under turbulent flow: A CFD-based simulation of near-wall turbulent impacts with experimental validation. Engineering Applications of Computational Fluid Mechanics, 16(1), 1526–1545. https://doi.org/10.1080/19942060.2022.2099978
  • Favrel, A., Müller, A., Landry, C., Gomes, J., Yamamoto, K., & Avellan, F. (2017). Dynamics of the precessing vortex rope and its interaction with the system at Francis turbines part load operating conditions. Journal of Physics: Conference Series, 813, 012023. https://doi.org/10.1088/1742-6596/813/1/012023
  • Favrel, A., Müller, A., Landry, C., Yamamoto, K., & Avellan, F. (2015). Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry. Experiments in Fluids, 56(12), 215. https://doi.org/10.1007/s00348-015-2085-5
  • Favrel, A., Müller, A., Landry, C., Yamamoto, K., & Avellan, F. (2016). Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV. IOP Conference Series: Earth and Environmental Science, 49, 082011. https://doi.org/10.1088/1755-1315/49/8/082011
  • Favrel, A. T. (2016). Dynamics of the cavitation precessing vortex rope for Francis turbines at part load operating conditions. EPFL. https://infoscience.epfl.ch/record/215867/files/EPFL_TH6880.pdf.
  • Foroutan, H., & Yavuzkurt, S. (2014a). Flow in the simplified draft tube of a Francis turbine operating at partial load—part I: Simulation of the vortex rope. Journal of Applied Mechanics, 81(6), 061010. https://doi.org/10.1115/1.4026817
  • Foroutan, H., & Yavuzkurt, S. (2014b). Flow in the simplified draft tube of a Francis turbine operating at partial load—part II: Control of the vortex rope. Journal of Applied Mechanics, 81(6), 061011. https://doi.org/10.1115/1.4026818
  • Gao, Z., Zhu, W., Meng, L., Zhang, J., Zhang, F., Pan, L., & Lu, L. (2018). Experimental study of the Francis turbine pressure fluctuations and the pressure fluctuations superposition phenomenon inside the runner. Journal of Fluids Engineering, 140(4), 041208. https://doi.org/10.1115/1.4038535
  • Goyal, R., Cervantes, M. J., & Gandhi, B. K. (2017a). Characteristics of synchronous and asynchronous modes of fluctuations in Francis turbine draft tube during load variation. International Journal of Fluid Machinery and Systems, 10(2), 164–175. https://doi.org/10.5293/IJFMS.2017.10.2.164
  • Goyal, R., Cervantes, M. J., & Gandhi, B. K. (2017b). Vortex rope formation in a high head model Francis turbine. Journal of Fluids Engineering, 139(4), 041102. https://doi.org/10.1115/1.4035224
  • Goyal, R., Gandhi, B. K., & Cervantes, M. J. (2018). PIV measurements in Francis turbine – a review and application to transient operations. Renewable and Sustainable Energy Reviews, 81, 2976–2991. https://doi.org/10.1016/j.rser.2017.06.108
  • Goyal, R., Trivedi, C., Gandhi, B. K., Cervantes, M. J., & Dahlhaug, O. G. (2016). Transient pressure measurements at part load operating condition of a high head model francis turbine. Sādhanā, 41(11), 1311–1320. https://doi.org/10.1007/s12046-016-0556-x
  • Gupta, A. K., Lilley, D. G., & Syred, N. (1984). Swirl flows. https://ui.adsabs.harvard.edu/abs/1984tw…book…G.
  • Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. (Ed.),(Eds.). Studying Turbulence Using Numerical Simulation Databases. Proceedings of the 1988 summer program, San Francisco, USA.
  • Iliescu, M. S., Ciocan, G. D., & Avellan, F. (2008). Analysis of the cavitating draft tube vortex in a Francis turbine using particle image velocimetry measurements in Two-phase flow. Journal of Fluids Engineering, 130(2), 021105. https://doi.org/10.1115/1.2813052
  • Jafarzadeh Juposhti, H., Maddahian, R., & Cervantes, M. J. (2021). Optimization of axial water injection to mitigate the rotating vortex rope in a Francis turbine. Renewable Energy, 175, 214–231. https://doi.org/10.1016/j.renene.2021.05.038
  • Javadi, A., & Nilsson, H. (2017). Active flow control of the vortex rope and pressure pulsations in a swirl generator. Engineering Applications of Computational Fluid Mechanics, 11(1), 30–41. https://doi.org/10.1080/19942060.2016.1235515
  • Jiang, L.-J., Zhang, R.-H., Chen, X.-B., & Guo, G.-Q. (2022). Analysis of the high-speed jet in a liquid-ring pump ejector using a proper orthogonal decomposition method. Engineering Applications of Computational Fluid Mechanics, 16(1), 1382–1394. https://doi.org/10.1080/19942060.2022.2089733
  • Khullar, S., Singh, K., Gandhi, B., & Cervantes, M. J. (2018, December 10-12). Effect of axial water jet size and velocity on unsteady pressure pulsations in a deaccelerating swirling flow. (Ed.),(Eds.). Proceedings of the 7th International and 45th National Conference on Fluid Mechanics and Fluid Power (FMFP), Mumbai, India.
  • Khullar, S., Singh, K. M., Cervantes, M. J., & Gandhi, B. K. (2021). Comparison of axial water and air injections in the draft tube of a Francis Turbine for RVR Mitigation. (Ed.),(Eds.). ASME 2021 Fluids Engineering Division Summer Meeting.
  • Khullar, S., Singh, K. M., Cervantes, M. J., & Gandhi, B. K. (2022). Numerical analysis of water Jet injection in the draft tube of a Francis turbine at part load operations. Journal of Fluids Engineering, 144(11), 111201. https://doi.org/10.1115/1.4054564
  • Kim, S.-J., Cho, Y., & Kim, J.-H. (2021). Effect of air injection on the internal flow characteristics in the draft tube of a Francis turbine model. Processes, 9(7), 1182. https://www.mdpi.com/2227-9717/9/7/1182. https://doi.org/10.3390/pr9071182
  • Kumar, S., Cervantes, M. J., & Gandhi, B. K. (2021). Rotating vortex rope formation and mitigation in draft tube of hydro turbines – a review from experimental perspective. Renewable and Sustainable Energy Reviews, 136, 110354. https://doi.org/10.1016/j.rser.2020.110354
  • Li, D., Yu, L., Yan, X., Wang, H., Shi, Q., & Wei, X. (2021). Runner cone optimization to reduce vortex rope-induced pressure fluctuations in a Francis turbine. Science China Technological Sciences, 64(9), 1953–1970. https://doi.org/10.1007/s11431-021-1867-2
  • Liu, Y., Wang, D., & Ran, H. (2021). Computational research on the formation mechanism of double humps in pump–turbines. Engineering Applications of Computational Fluid Mechanics, 15(1), 1542–1562. https://doi.org/10.1080/19942060.2021.1977711
  • Luo, X., Yu, A., Ji, B., Wu, Y., & Tsujimoto, Y. (2017). Unsteady vortical flow simulation in a Francis turbine with special emphasis on vortex rope behavior and pressure fluctuation alleviation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 231(3), 215–226. https://doi.org/10.1177/0957650917692153
  • Masoodi, F. A., & Goyal, R. (2021). Efficacy of ancillary fluid injection technique for mitigation of vortex rope in hydraulic turbines: A review. Materials Today: Proceedings, 47, 3043–3053. https://doi.org/10.1016/j.matpr.2021.05.618
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Mohammadi, M., Hajidavalloo, E., & Behbahani-Nejad, M. (2019). Investigation on combined air and water injection in Francis turbine draft tube to reduce vortex rope effects. Journal of Fluids Engineering, 141(5), 051301. https://doi.org/10.1115/1.4041565
  • Mulu, B. G., Cervantes, M. J., Devals, C., Vu, T. C., & Guibault, F. (2015). Simulation-based investigation of unsteady flow in near-hub region of a Kaplan turbine with experimental comparison. Engineering Applications of Computational Fluid Mechanics, 9(1), 139–156. https://doi.org/10.1080/19942060.2015.1004816
  • Nakashima, T., Matsuzaka, R., Miyagawa, K., Yonezawa, K., & Tsujimoto, Y. (2014). Study on flow instability and countermeasure in a draft tube with swirling flow. IOP Conference Series: Earth and Environmental Science, 22(3), 032007. https://doi.org/10.1088/1755-1315/22/3/032007
  • Nakkina, P. R., Arul Prakash, K., & Saravana Kumar, G. (2016). Numerical studies on fluid flow characteristics through different configurations of spiral casing. Engineering Applications of Computational Fluid Mechanics, 10(1), 296–310. https://doi.org/10.1080/19942060.2016.1149103
  • Nishi, M. (1984). Surging characteristics of conical and elbow type draft tubes. (Ed.),(Eds.). Proc. 12th IAHR Symposium on Hydraulic Machinery and System, Stirling, 1984.
  • Pasche, S., Gallaire, F., & Avellan, F. (2019). Origin of the synchronous pressure fluctuations in the draft tube of Francis turbines operating at part load conditions. Journal of Fluids and Structures, 86, 13–33. https://doi.org/10.1016/j.jfluidstructs.2019.01.013
  • Picone, C., Sinagra, M., Aricò, C., & Tucciarelli, T. (2021). Numerical analysis of a new cross-flow type hydraulic turbine for high head and low flow rate. Engineering Applications of Computational Fluid Mechanics, 15(1), 1491–1507. https://doi.org/10.1080/19942060.2021.1974559
  • Platonov, D., Minakov, A., Dekterev, D., & Maslennikova, A. (2020). An experimental investigation of the air injection effect on the vortex structure and pulsation characteristics in the Francis turbine. International Journal of Fluid Machinery and Systems, 13(1), 103–113. https://doi.org/10.5293/IJFMS.2020.13.1.103
  • Presas, A., Luo, Y., Wang, Z., & Guo, B. (2019). Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends. Renewable and Sustainable Energy Reviews, 102, 96–110. https://doi.org/10.1016/j.rser.2018.12.001
  • Qian, Z.-d., Yang, J.-d., & Huai, W.-x. (2007). Numerical simulation and analysis of pressure pulsation in francis hydraulic turbine with air admission. Journal of Hydrodynamics, Ser. B, 19(4), 467–472. https://doi.org/10.1016/S1001-6058(07)60141-3
  • Sotoudeh, N., Maddahian, R., & Cervantes, M. J. (2020). Investigation of rotating vortex rope formation during load variation in a Francis turbine draft tube. Renewable Energy, 151, 238–254. https://doi.org/10.1016/j.renene.2019.11.014
  • Sun, L., Guo, P., & Luo, X. (2020). Numerical investigation on inter-blade cavitation vortex in a Franics turbine. Renewable Energy, 158, 64–74. https://doi.org/10.1016/j.renene.2020.05.034
  • Sun, L., Guo, P., & Luo, X. (2021). Numerical investigation of inter-blade cavitation vortex for a Francis turbine at part load conditions. IET Renewable Power Generation, 15(6), 1163–1177. https://doi.org/10.1049/rpg2.12096
  • Sun, L., Guo, P., & Yan, J. (2021). Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh. Renewable Energy, 171, 658–671. https://doi.org/10.1016/j.renene.2021.02.151
  • Sun, L.-g., Guo, P.-c., & Wu, L.-c. (2020). Numerical investigation of alleviation of undesirable effect of inter-blade vortex with air admission for a low-head francis turbine. Journal of Hydrodynamics, 32(6), 1151–1164. https://doi.org/10.1007/s42241-020-0081-6
  • Tanasa, C., Stuparu, A., Stroita, C., Popescu, C., & Susan-Resiga, R. (2019). 3D numerical analysis of pulsating water jet in the draft tube cone of hydraulic machinery. (Ed.),(Eds.). AIP Conference Proceedings.
  • Unterluggauer, J., Maly, A., & Doujak, E. (2019). Investigation on the impact of air admission in a prototype Francis turbine at Low-load operation. Energies, 12(15), 2893. https://www.mdpi.com/1996-1073/12/15/2893. https://doi.org/10.3390/en12152893
  • Wang, Z., Cheng, H., & Ji, B. (2021). Euler–Lagrange study of cavitating turbulent flow around a hydrofoil. Physics of Fluids, 33(11), 112108. https://doi.org/10.1063/5.0070312
  • Wang, Z., Cheng, H., & Ji, B. (2022). Numerical prediction of cavitation erosion risk in an axisymmetric nozzle using a multi-scale approach. Physics of Fluids, 34(6), 062112. https://doi.org/10.1063/5.0095833
  • Yu, A., Tang, Y., Tang, Q., Cai, J., Zhao, L., & Ge, X. (2022). Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory. Renewable Energy, 183, 447–458. https://doi.org/10.1016/j.renene.2021.10.094
  • Yu, Z.-F., Yan, Y., Wang, W.-Q., & Liu, X.-S. (2021). Entropy production analysis for vortex rope of a Francis turbine using hybrid RANS/LES method. International Communications in Heat and Mass Transfer, 127, 105494. https://doi.org/10.1016/j.icheatmasstransfer.2021.105494
  • Zeng, Y. S., Li, N., Wang, C. Y., Xiao, R. F., Wang, F. J., & Yao, Z. F. (2022). Resonance risk assessment method on a storage pump’s centrifugal impeller by considering the hydrodynamic damping ratio. Engineering Applications of Computational Fluid Mechanics, 16(1), 2175–2189. https://doi.org/10.1080/19942060.2022.2143902
  • Zhang, Y., Liu, K., Xian, H., & Du, X. (2018). A review of methods for vortex identification in hydroturbines. Renewable and Sustainable Energy Reviews, 81, 1269–1285. https://doi.org/10.1016/j.rser.2017.05.058
  • Zhu, L., Zhang, R.-z., Yu, A., Lu, L., & Luo, X.-w. (2021). Suppression of vortex rope oscillation and pressure vibrations in Francis turbine draft tube using various strategies. Journal of Hydrodynamics, 33(3), 534–545. https://doi.org/10.1007/s42241-021-0038-4
  • Zwart, P. J., Gerber, A. G., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics. (Ed.),(Eds.). Fifth international conference on multiphase flow, Yokohama, Japan.