1,696
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Energy and cost management of different mixing ratios and morphologies on mono and hybrid nanofluids in collector technologies

, , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2164620 | Received 08 Nov 2022, Accepted 29 Dec 2022, Published online: 24 Jan 2023

References

  • Abdolbaqi, M. K., Mamat, R., Sidik, N. A. C., Azmi, W. H., & Selvakumar, P. (2017). Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of BioGlycol/water based TiO2 nanofluids in flat tubes. International Journal of Heat and Mass Transfer, 108, 1026–1035. https://doi.org/10.1016/j.ijheatmass-transfer.2016.12.024
  • Ahmed, W., Sidik, N. A. C., Mehmood, S., Alam, M. W., Fayaz, H., Hussain, M. I., Alawi, O. A., Ahmed, S. M., Shah, S. N. A., & Kazi, S. N. (2022). Effects of thermophysical, hydrodynamics and thermal characteristics of well stable metallic nanofluids on energy transportation. Journal of Thermal Analysis and Calorimetry, 147(23), 13879–13900. https://doi.org/10.1007/s10973-022-11696-8
  • Akram, N., Montazer, E., Kazi, S. N., Soudagar, M. E. M., Ahmed, W., Zubir, M. N. M., Afzal, A., Muhammad, M. R., Ali, H. M., Márquez, F. P. G., & Sarsam, W. S. (2021). Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy, 120452. https://doi.org/10.1016/j.energy.2021.120452
  • Alawi, O. A., Kamar, H. M., Mallah, A. R., Mohammed, H. A., Kazi, S. N., Sidik, N. A. C., & Najafi, G. (2020). Nanofluids for flat plate solar collectors: Fundamentals and applications. Journal of Cleaner Production, 125725. https://doi.org/10.1016/j.jclepro.2020.125725
  • Babar, H., & Ali, H. M. (2019). Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. Journal of Molecular Liquids, 598–633. https://doi.org/10.1016/j.molliq.2019.02.102
  • Benkhedda, M., Boufendi, T., Tayebi, T., & Chamkha, A. J. (2019). Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. Journal of Thermal Analysis and Calorimetry, 140(1), 411–425. https://doi.org/10.1007/s10973-019-08836-y
  • Bezaatpour, M., & Rostamzadeh, H. (2021). Simultaneous energy storage enhancement and pressure drop reduction in flat plate solar collectors using rotary pipes with nanofluid. Energy and Buildings, 239, 110855. https://doi.org/10.1016/j.enbuild.2021.110855
  • Bhattad, A., Sarkar, J., & Ghosh, P. (2019). Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Applied Thermal Engineering, 162, 114309. https://doi.org/10.1016/j.applther-maleng.2019.114309
  • Bretado-de los Rios, M. S., Rivera-Solorio, C. I., & & Nigam, K. D. P. (2021). An overview of sustainability of heat exchangers and solar thermal applications with nanofluids: A review. Renewable and Sustainable Energy Reviews, 142, 110855. https://doi.org/10.1016/j.rser.2021.110855
  • Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20(4), 571. https://doi.org/10.1063/1.1700493
  • Chakraborty, S., & Panigrahi, P. K. (2020). Stability of nanofluid: A review. Applied Thermal Engineering, 174, 115259. https://doi.org/10.1016/j.applthermaleng.2020.115259
  • Charjouei Moghadam, M., Edalatpour, M., & Solano, J. P. (2017). Numerical study on conjugated laminar mixed convection of alumina/water nanofluid flow, heat transfer, and entropy generation within a tube-on-sheet flat plate solar collector. Journal of Solar Energy Engineering, 041011. https://doi.org/10.1115/1.4036854
  • Choudhary, S., Sachdeva, A., & Kumar, P. (2020). Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renewable Energy, 147, 1801–1814. https://doi.org/10.1016/j.renene.2019.09.126
  • Dehaj, M. S., & Mohiabadi, M. Z. (2019). Experimental investigation of heat pipe solar collector using MgO nanofluids. Solar Energy Materials and Solar Cells, 91–99. https://doi.org/10.1016/j.solmat.2018.10.025
  • Edalatpour, M., & Solano, J. P. (2017). Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection. International Journal of Thermal Sciences, 397–409. https://doi.org/10.1016/j.ijthermalsci.2017.05.004
  • Ellahi, R., Hassan, M., & Zeeshan, A. (2015). Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. International Journal of Heat and Mass Transfer, 81, 449–456. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.041
  • Eltaweel, M., Abdel-Rehim, A. A., & Attia, A. A. A. (2021). A comparison between flat-plate and evacuated tube solar collectors in terms of energy and exergy analysis by using nanofluid. Applied Thermal Engineering, 186, 116516. https://doi.org/10.1016/j.applthermaleng.2020.116516
  • Farajzadeh, E., Movahed, S., & Hosseini, R. (2018). Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy, 118, 122–130. https://doi.org/10.1016/j.renene.2017.10.102
  • Farhana, K., Kadirgama, K., Mohammed, H. A., Ramasamy, D., Samykano, M., & Saidur, R. (2021). Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids. Sustainable Energy Technologies and Assessments, 45, 101049. https://doi.org/10.1016/j.seta.2021.101049
  • Genc, A. M., Ezan, M. A., & Turgut, A. (2018). Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study. Applied Thermal Engineering, 395–407. https://doi.org/10.1016/j.applthermaleng.2017.10.166
  • Gunjo, D. G., Mahanta, P., & Robi, P. S. (2017). CFD and experimental investigation of flat plate solar water heating system under steady state condition. Renewable Energy, 106, 24–36. https://doi.org/10.1016/j.renene.2016.12.041
  • Gupta, M., Singh, V., Kumar, S., Kumar, S., Dilbaghi, N., & Said, Z. (2018). Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. Journal of Cleaner Production, 169–192. https://doi.org/10.1016/j.jclepro.2018.04.146
  • Hussein, O. A., Habib, K., Muhsan, A. S., Saidur, R., Alawi, O. A., & Ibrahim, T. K. (2020). Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Solar Energy, 204, 208–222. https://doi.org/10.1016/j.solener.2020.04.034
  • Khan, A. I., & Valan Arasu, A. (2019). A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Thermal Science and Engineering Progress, 11, 334–364. https://doi.org/10.1016/j.tsep.2019.04.010
  • Kumar, L. H., Kazi, S. N., Masjuki, H. H., Zubir, M. N. M., Jahan, A., & Bhinitha, C. (2021). Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets. Applied Thermal Engineering, 116916.
  • Kumar, V., & Sarkar, J. (2019). Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3-TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technology, 345, 717–727. https://doi.org/10.1016/j.powtec.2019.01.061
  • Kumar, V., & Sarkar, J. (2020a). Experimental hydrothermal behavior of hybrid nanofluid for various particle ratios and comparison with other fluids in minichannel heat sink. International Communications in Heat and Mass Transfer, 110, 104397. https://doi.org/10.1016/j.icheatmasstransfer.2019.104397
  • Kumar, V., & Sarkar, J. (2020b). Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance. Applied Thermal Engineering, 165, 114546. https://doi.org/10.1016/j.applthermal-eng.2019.114546
  • Liu, S., Afan, H. A., Aldlemy, M. S., Al-Ansari, N., & Yaseen, Z. M. (2020). Energy analysis using carbon and metallic oxides-based nanomaterials inside a solar collector. Energy Reports, 6, 1373–1381. https://doi.org/10.1016/j.egyr.2020.05.015
  • Marulasiddeshi, H. B., Kanti, P. K., Jamei, M., Prakash, S. B., Sridhara, S. N., & Said, Z. (2022). Experimental study on the thermal properties of Al2O3-CuO/water hybrid nanofluids: Development of an artificial intelligence model. International Journal of Energy Research, 46(15), 21066–21083. https://doi.org/10.1002/er.8739
  • Minea, A. A. (2017). Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison. Renewable and Sustainable Energy Reviews, 71, 426–434. https://doi.org/10.1016/j.rser.2016.12.072
  • Munyalo, J. M., & Zhang, X. (2018). Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review. Journal of Molecular Liquids, 265, 77–87. https://doi.org/10.1016/j.molliq.2018.05.129
  • Okonkwo, E. C., Wole-Osho, I., Kavaz, D., Abid, M., & Al-Ansari, T. (2020). Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments, 100636. https://doi.org/10.1016/j.seta.2020.100636
  • Pandey, K. M., & Chaurasiya, R. (2017). A review on analysis and development of solar flat plate collector. Renewable and Sustainable Energy Reviews, 641–650. https://doi.org/10.1016/j.rser.2016.09.078
  • Sahoo, R. R., & Sarkar, J. (2016). Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator. Heat and Mass Transfer, 53(6), 1923–1931. https://doi.org/10.1007/s00231-016-1951-x
  • Sarsam, W. S., Kazi, S. N., & Badarudin, A. (2020a). Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas. Applied Thermal Engineering, 115142. https://doi.org/10.1016/j.applthermaleng.2020.115142
  • Sarsam, W. S., Kazi, S. N., & Badarudin, A. (2020b). Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of multi-walled carbon nanotubes with different outside diameters. Experimental Heat Transfer, 258–281. https://doi.org/10.1080/08916152.2020.1847215
  • Sheikholeslami, M., Farshad, S. A., Ebrahimpour, Z., & Said, Z. (2021). Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. Journal of Cleaner Production, 126119. https://doi.org/10.1016/j.jclepro.2021.126119
  • Singh, S. K., & Sarkar, J. (2018). Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant. International Communications in Heat and Mass Transfer, 98, 41–48. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.005
  • Sint, N. K. C., Choudhury, I. A., Masjuki, H. H., & Aoyama, H. (2017). Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. Solar Energy, 155, 608–619. https://doi.org/10.1016/j.solener.2017.06.055
  • Sundar, L. S., Ramana, E. V., Said, Z., Punnaiah, V., Mouli, K. V. V. C., & Sousa, A. C. M. (2020). Properties, heat transfer, energy efficiency and environmental emissions analysis of flat plate solar collector using nanodiamond nanofluids. Diamond and Related Materials, 110, 108115. https://doi.org/10.1016/j.diamond.2020.108115
  • Tao, H., Alawi, O. A., Hussein, O. A., Ahmed, W., Abdelrazek, A. H., Homod, R. Z., Eltaweel, M., Falah, M. W., Al-Ansari, N., & Yaseen, Z. M. (2022). Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators. Scientific Reports, 12(1), 17710. https://doi.org/10.1038/s41598-022-22315-9
  • Timofeeva, E. V., Routbort, J. L., & Singh, D. (2009). Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics, 106(1), 014304. https://doi.org/10.1063/1.3155999
  • Tong, Y., Chi, X., Kang, W., & Cho, H. (2020). Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids. Applied Thermal Engineering, 115346. https://doi.org/10.1016/j.applthermaleng.2020.115346
  • Verma, S. K., Tiwari, A. K., & Chauhan, D. S. (2017). Experimental evaluation of flat plate solar collector using nanofluids. Energy Conversion and Management, 134, 103–115. https://doi.org/10.1016/j.enconman.2016.12.037
  • Verma, S. K., Tiwari, A. K., Tiwari, S., & Chauhan, D. S. (2018). Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy, 167, 231–241. https://doi.org/10.1016/j.solener.2018.04.017
  • Xiong, Q., Altnji, S., Tayebi, T., Izadi, M., Hajjar, A., Sundén, B., & Li, L. K. B. (2021). A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sustainable Energy Technologies and Assessments, 47, 101341. https://doi.org/10.1016/j.seta.2021.101341
  • Yang, L., Ji, W., Mao, M., & Huang, J. (2020). An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. Journal of Cleaner Production, 257, 120408. https://doi.org/10.1016/j.jclepro.2020.120408
  • Zayed, M. E., Zhao, J., Du, Y., Kabeel, A. E., & Shalaby, S. M. (2019). Factors affecting the thermal performance of the flat plate solar collector using nanofluids: A review. Solar Energy, 182, 382–396. https://doi.org/10.1016/j.solener.2019.02.054
  • Ziyadanogullari, N. B., Yucel, H. L., & Yildiz, C. (2018). Thermal performance enhancement of flat-plate solar collectors by means of three different nanofluids. Thermal Science and Engineering Progress, 8, 55–65. https://doi.org/10.1016/j.tsep.2018.07.005