2,509
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network

, &
Article: 2165159 | Received 15 Sep 2022, Accepted 02 Jan 2023, Published online: 17 Jan 2023

References

  • Ahmad, S., Ahmad, Z., Kim, C. H., & Kim, J. M. (2022). A method for pipeline leak detection based on acoustic imaging and deep learning. Sensors, 22(4). https://doi.org/10.3390/s22041562
  • Angulo, Á, Mares, C., & Gan, T. H. (2021). Diagnostic feature extraction and filtering criterion for fatigue crack growth using high frequency parametrical analysis. Sensors, 21(15). https://doi.org/10.3390/s21155030
  • Banjara, N. K., Sasmal, S., & Voggu, S. (2020). Machine learning supported acoustic emission technique for leakage detection in pipelines. International Journal of Pressure Vessels and Piping, 188. https://doi.org/10.1016/j.ijpvp.2020.104243
  • Che, T. C., Duan, H. F., & Lee, P. J. (2021). Transient wave-based methods for anomaly detection in fluid pipes: A review. Mechanical Systems and Signal Processing, 160. https://doi.org/10.1016/j.ymssp.2021.107874
  • Chen, C. C., Liu, Z., Yang, G., Wu, C. C., & Ye, Q. (2021). An improved fault diagnosis using 1d-convolutional neural network model. Electronics (Switzerland), 10(1), 1–19. https://doi.org/10.3390/electronics10010059
  • Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics.
  • Costa, M., Goldberger, A. L., & Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical Review Letters, 89(6). https://doi.org/10.1103/PhysRevLett.89.068102
  • Das, A. K., Suthar, D., & Leung, C. K. Y. (2019). Machine learning based crack mode classification from unlabeled acoustic emission waveform features. Cement and Concrete Research, 121, 42–57. https://doi.org/10.1016/j.cemconres.2019.03.001
  • Duan, H. F., Pan, B., Wang, M., Chen, L., Zheng, F., & Zhang, Y. (2020). State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology – AQUA, 69(8), 858–893. https://doi.org/10.2166/aqua.2020.048
  • Goliatt, L., Sulaiman, S. O., Khedher, K. M., Farooque, A. A., & Yaseen, Z. M. (2021). Estimation of natural streams longitudinal dispersion coefficient using hybrid evolutionary machine learning model. Engineering Applications of Computational Fluid Mechanics, 15(1), 1298–1320. https://doi.org/10.1080/19942060.2021.1972043
  • Hasan, M. J., Rai, A., Ahmad, Z., & Kim, J. M. (2021). A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning. IEEE Access, 9, 58052–58066. https://doi.org/10.1109/ACCESS.2021.3072854
  • Hu, X., Zhang, H., Ma, D., & Wang, R. (2021). A tnGAN-based leak detection method for pipeline network considering incomplete sensor data. IEEE Transactions on Instrumentation and Measurement, 70. https://doi.org/10.1109/TIM.2020.3045843
  • Kelkel, B., Popow, V., & Gurka, M. (2020). Inline quantification and localization of transverse matrix cracking in cross-ply CFRP during quasi-static tensile testing by a joint event-based evaluation of acoustic emission and passive IR thermography. Composites Science and Technology, 190. https://doi.org/10.1016/j.compscitech.2020.108013
  • Keramat, A., & Duan, H. F. (2021). Spectral based pipeline leak detection using a single spatial measurement. Mechanical Systems and Signal Processing, 161. https://doi.org/10.1016/j.ymssp.2021.107940
  • Korlapati, N. V. S., Khan, F., Noor, Q., Mirza, S., & Vaddiraju, S. (2022). Review and analysis of pipeline leak detection methods. Journal of Pipeline Science and Engineering, 100074. https://doi.org/10.1016/j.jpse.2022.100074
  • Latif, J., Shakir, M. Z., Edwards, N., Jaszczykowski, M., Ramzan, N., & Edwards, V. (2022). Review on condition monitoring techniques for water pipelines. Measurement: Journal of the International Measurement Confederation, 193. https://doi.org/10.1016/j.measurement.2022.110895
  • Li, G., Zeng, K., Zhou, B., Yang, W., Lin, X., Wang, F., Chen, Y., Ji, X., Zheng, D., & Mao, B. M. (2021). Vibration monitoring for the west-east Gas pipeline project of China by phase optical time domain reflectometry (phase-OTDR). Instrumentation Science and Technology, 49(1), 65–80. https://doi.org/10.1080/10739149.2020.1780253
  • Li, S., Cai, M., Han, M., & Dai, Z. (2022). Noise reduction based on CEEMDAN-ICA and cross-spectral analysis for leak location in water-supply pipelines. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3172557
  • Li, S., Gong, C., & Liu, Z. (2021). Field testing on a gas pipeline in service for leak localization using acoustic techniques. Measurement: Journal of the International Measurement Confederation, 182. https://doi.org/10.1016/j.measurement.2021.109791
  • Li, W., Huang, R., Li, J., Liao, Y., Chen, Z., He, G., Yan, R., & Gryllias, K. (2022). A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mechanical Systems and Signal Processing, 167. https://doi.org/10.1016/j.ymssp.2021.108487
  • Manogharan, P., Rivière, J., & Shokouhi, P. (2022). Toward In-situ characterization of additively manufactured parts using nonlinear resonance ultrasonic spectroscopy. Research in Nondestructive Evaluation, 1–24. https://doi.org/10.1080/09349847.2022.2103219
  • Miller, R. K., Hill, E. V. K., Moore, P. O., & American Society for Nondestructive Testing. (2005). Acoustic emission testing. American Society for Nondestructive Testing.
  • Philibert, M., Yao, K., Gresil, M., & Soutis, C. (2022). Lamb waves-based technologies for structural health monitoring of composite structures for aircraft applications. European Journal of Materials, 2(1), 436–474. https://doi.org/10.1080/26889277.2022.2094839
  • Pipeline Repair Guide. (2020). Applications repairs under pressure solutions for various forms of damage joining different types of pipe overcoming misaligned pipes.
  • Rai, A., Ahmad, Z., Hasan, M. J., & Kim, J. M. (2021). A novel pipeline leak detection technique based on acoustic emission features and two-sample Kolmogorov–Smirnov test. Sensors, 21(24). https://doi.org/10.3390/s21248247
  • Rienstra, S. W., & Hirschberg, A. (2018). An introduction to acoustics. Eindhoven University of Technology.
  • Sause, M. G. R. (2011). Investigation of pencil-lead breaks as acoustic emission sources. J. Acoustic Emission, 18(7).
  • Srivastava, N., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. (2014). Dropout: A simple Way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.
  • Stajuda, M., Cava, D. G., & Liśkiewicz, G. (2022). Aerodynamic instabilities detection via empirical mode decomposition in centrifugal compressors. Measurement, 111496. https://doi.org/10.1016/j.measurement.2022.111496
  • Sun, J., Xiao, Q., Wen, J., & Zhang, Y. (2016). Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis. Measurement: Journal of the International Measurement Confederation, 79, 147–157. https://doi.org/10.1016/j.measurement.2015.10.015
  • Wang, B., Zhong, S., Lee, T. L., Fancey, K. S., & Mi, J. (2020). Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. In Advances in Mechanical Engineering, 12(4). https://doi.org/10.1177/1687814020913761
  • Wang, F., Lin, W., Liu, Z., Wu, S., & Qiu, X. (2017). Pipeline leak detection by using time-domain statistical features. IEEE Sensors Journal, 17(19), 6431–6442. https://doi.org/10.1109/JSEN.2017.2740220
  • Wang, W., Mao, X., Liang, H., Yang, D., Zhang, J., & Liu, S. (2021). Experimental research on in-pipe leaks detection of acoustic signature in gas pipelines based on the artificial neural network. Measurement: Journal of the International Measurement Confederation, 183. https://doi.org/10.1016/j.measurement.2021.109875
  • Wang, W., Sun, H., Guo, J., Lao, L., Wu, S., & Zhang, J. (2021). Experimental study on water pipeline leak using In-pipe acoustic signal analysis and artificial neural network prediction. Measurement: Journal of the International Measurement Confederation, 186. https://doi.org/10.1016/j.measurement.2021.110094
  • Xiao, R., Hu, Q., & Li, J. (2021). A model-based health indicator for leak detection in gas pipeline systems. Measurement: Journal of the International Measurement Confederation, 171. https://doi.org/10.1016/j.measurement.2020.108843
  • Xing, J., Meng, H., & Meng, X. (2020). An urban pipeline accident model based on system engineering and game theory. Journal of Loss Prevention in the Process Industries, 64. https://doi.org/10.1016/j.jlp.2020.104062
  • Xu, T., Zeng, Z., Huang, X., Li, J., & Feng, H. (2021). Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector. Process Safety and Environmental Protection, 153, 167–177. https://doi.org/10.1016/j.psep.2021.07.024
  • Yafouz, A., Ahmed, A. N., Zaini, N., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2021). Hybrid deep learning model for ozone concentration prediction: Comprehensive evaluation and comparison with various machine and deep learning algorithms. Engineering Applications of Computational Fluid Mechanics, 15(1), 902–933. https://doi.org/10.1080/1994-2060.2021.1926328
  • Zhang, B., Kang, R., Zhu, H., Yuan, Q., Zhang, Q., & Zhou, X. (2022). Numerical simulation and safety evaluation of multi-source leakage of buried product oil pipeline. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 6737–6757. https://doi.org/10.1080/15567036.2022.2100518
  • Zhang, S., Su, L., Gu, J., Li, K., Zhou, L., & Pecht, M. (2021). Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey. Chinese Journal of Aeronautics, 36(1). https://doi.org/10.1016/j.cja.2021.10.006
  • Zhang, Z., Zhang, L., Fu, M., Ozevin, D., & Yuan, H. (2022). Study on leak localization for buried gas pipelines based on an acoustic method. Tunnelling and Underground Space Technology, 120. https://doi.org/10.1016/j.tust.2021.104247
  • Zheng, X., Hu, F., Wang, Y., Zheng, L., Gao, X., Zhang, H., You, S., & Xu, B. (2021). Leak detection of long-distance district heating pipeline: A hydraulic transient model-based approach. Energy, 237. https://doi.org/10.1016/j.energy.2021.121604