1,535
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of Smoothed Particle Hydrodynamics based water hammer model for water distribution systems

, , , , ORCID Icon, & show all
Article: 2171139 | Received 04 Oct 2022, Accepted 17 Jan 2023, Published online: 31 Jan 2023

References

  • Alawadhi, A., & Tartakovsky, D. M. (2020). Bayesian update and method of distributions: Application to leak detection in transmission mains. Water Resources Research, 56(2), Article e2019WR025879. https://doi.org/10.1029/2019WR025879
  • Albano, R., Sole, A., Mirauda, D., & Adamowski, J. (2016). Modelling large floating bodies in urban area flash-floods via a smoothed particle hydrodynamics model. Journal of Hydrology, 541, 344–358. https://doi.org/10.1016/j.jhydrol.2016.02.009
  • Aristodemo, F., Marrone, S., & Federico, I. (2015). SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Engineering, 105, 160–175. https://doi.org/10.1016/j.oceaneng.2015.06.018
  • Basser, H., Rudman, M., & Daly, E. (2019). Smoothed Particle Hydrodynamics modelling of fresh and salt water dynamics in porous media. Journal of Hydrology, 576, 370–380. https://doi.org/10.1016/j.jhydrol.2019.06.048
  • Bergant, A., Simpson, A. R., & Vitkovsky, J. (2001). Developments in unsteady pipe flow friction modelling. Journal of Hydraulic Research, 39(3), 249–257. https://doi.org/10.1080/00221680109499828
  • Brunone, B., Golia, U. M., & Greco, M. (1991). Some remarks on the momentum equation for fast transients. Int. Meeting on hydraulic transients with column separation, 9th round table, Valencia, Spain.
  • Budinski, L. (2016). Application of the LBM with adaptive grid on water hammer simulation. Journal of Hydroinformatics, 18(4), 687–701. https://doi.org/10.2166/hydro.2016.164
  • Chang, K.-H., & Chang, T.-J. (2021). A well-balanced and positivity-preserving SPH method for shallow water flows in open channels. Journal of Hydraulic Research, 59(6), 903–916. https://doi.org/10.1080/00221686.2020.1866689
  • Chang, T. J., & Chang, K. H. (2013). SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries. Journal of Hydraulic Engineering, 139(11), 1142–1149. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000782
  • Chaudhry, M. H. (1993). Open-channel flow. Prentice-Hall.
  • Chaudhry, M. H., & Hussaini, M. Y. (1985). Second-order accurate explicit finite-difference schemes for waterhammer analysis. Journal of Fluids Engineering, 107(4), 523–529. https://doi.org/10.1115/1.3242524
  • Chen, J. K., Beraun, J. E., & Carney, T. C. (1999). A corrective smoothed particle method for boundary value problems in heat conduction. International Journal for Numerical Methods in Engineering, 46(2), 231–252. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K
  • Cheng, Y.-G., Zhang, S.-H., & Chen, J.-Z. (1998). Water hammer simulation by the Lattice Boltzmann method. Transactions of the Chinese Hydraulic Engineering Society. Journal of Hydraulic Engineering, 6, 25–31.
  • Daude, F., Tijsseling, A. S., & Galon, P. (2018). Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using a one-dimensional Finite-Volume approach. Journal of Fluids and Structures, 83, 91–118. https://doi.org/10.1016/j.jfluidstructs.2018.08.014
  • De Padova, D., Ben Meftah, M., Mossa, M., & Sibilla, S. (2022). A multi-phase SPH simulation of hydraulic jump oscillations and local scouring processes downstream of bed sills. Advances in Water Resources, 159, Article 104097. https://doi.org/10.1016/j.advwatres.2021.104097
  • Dong, X., Hao, G., & Yu, R. (2022). Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior. Engineering Applications of Computational Fluid Mechanics, 16(1), 588–629. https://doi.org/10.1080/19942060.2022.2026820
  • Duan, H.-F., Pan, B., Wang, M., Chen, L., Zheng, F., & Zhang, Y. (2020). State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology-Aqua, 69(8), 858–893. https://doi.org/10.2166/aqua.2020.048
  • Federico, I., Marrone, S., Colagrossi, A., Aristodemo, F., & Antuono, M. (2012). Simulating 2D open-channel flows through an SPH model. European Journal of Mechanics – B/Fluids, 34, 35–46. https://doi.org/10.1016/j.euromechflu.2012.02.002
  • Ferrari, A., Dumbser, M., Toro, E. F., & Armanini, A. (2009). A new 3D parallel SPH scheme for free surface flows. Computers & Fluids, 38(6), 1203–1217. https://doi.org/10.1016/j.compfluid.2008.11.012
  • Goldberg, D. E., & Wylie, E. B. (1983). Characteristics method using time-line interpolations. Journal of Hydraulic Engineering, 109(5), 670–683. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(670)
  • Gorev, N. B., & Kodzhespirova, I. F. (2013). Noniterative implementation of pressure-dependent demands using the hydraulic analysis engine of EPANET 2. Water Resources Management, 27(10), 3623–3630. https://doi.org/10.1007/s11269-013-0369-1
  • He, J. H. (2004). A modified newton-raphson method. Communications in Numerical Methods in Engineering, 20(10), 801–805. https://doi.org/10.1002/cnm.664
  • Hou, Q., Kruisbrink, A., Tijsseling, A., & Keramat, A. (2012). Simulating water hammer with corrective smoothed particle method.
  • Hou, Q., Zhang, L. X., Tijsseling, A. S., & Kruisbrink, A. C. H. (2011, December 14–16). Rapid filling of pipelines with the SPH particle method. International conference on Advances in Computational Modeling and Simulation (ACMS), Kunming, PEOPLES R CHINA. ≤Go to ISI≥://WOS:000314094600007
  • Karney, B. W., & Ghidaoui, M. S. (1997). Flexible discretization algorithm for fixed-grid MOC in pipelines. Journal of Hydraulic Engineering, 123(11), 1004–1011. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(1004)
  • Kim, S. H. (2022). Dimensionless impedance method for the transient response of pressurized pipeline system. Engineering Applications of Computational Fluid Mechanics, 16(1), 1641–1654. https://doi.org/10.1080/19942060.2022.2108500
  • Leon, A., Ghidaoui, M., Schmidt, A., & García, M. (2007). An efficient finite-volume scheme for modeling water hammer flows. Journal of Water Management Modeling, 15, 411–430. https://doi.org/10.14796/JWMM.R227-21
  • Leon, A., Ghidaoui, M., Schmidt, A., & García, M. (2008). Efficient second-order accurate shock-capturing scheme for modeling one- and two-phase water hammer flows. Journal of Hydraulic Engineering, 134(7), 970–983. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(970)
  • Lin, P., Liu, X., & Zhang, J. (2015). The simulation of a landslide-induced surge wave and its overtopping of a dam using a coupled ISPH model. Engineering Applications of Computational Fluid Mechanics, 9(1), 432–444. https://doi.org/10.1080/19942060.2015.1048620
  • Liu, G.-R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: A meshfree particle method. World Scientific.
  • Louati, M., Tekitek, M. M., & Ghidaoui, M. S. (2019). On the dissipation mechanism of lattice Boltzmann method when modeling 1-d and 2-d water hammer flows. Computers & Fluids, 193, Article 103996. https://doi.org/10.1016/j.compfluid.2018.09.001
  • Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82(12), 1013–1024. https://doi.org/10.1086/112164
  • Meister, M., & Rauch, W. (2016). Wastewater treatment modelling with smoothed particle hydrodynamics. Environmental Modelling & Software, 75, 206–211. https://doi.org/10.1016/j.envsoft.2015.10.010
  • Ming, F. R., Zhang, A. M., Cheng, H., & Sun, P. N. (2018). Numerical simulation of a damaged ship cabin flooding in transversal waves with Smoothed Particle Hydrodynamics method. Ocean Engineering, 165, 336–352. https://doi.org/10.1016/j.oceaneng.2018.07.048
  • Monaghan, J. J., & Lattanzio, J. C. (1985). A refined particle method for astrophysical problems. Astronomy & Astrophysics, 149(1), 135–143. ≤Go to ISI≥://WOS:A1985ANF9600025.
  • Nomeritae, N., Bui, H. H., & Daly, E. (2018). Modeling transitions between free surface and pressurized flow with smoothed particle hydrodynamics. Journal of Hydraulic Engineering, 144(5), Article 04018012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001437
  • Pan, T., Zhou, L., Ou, C., Wang, P., & Liu, D. (2022). Smoothed particle hydrodynamics with unsteady friction model for water hammer pipe flow. Journal of Hydraulic Engineering, 148(2), Article 04021057. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001966
  • Samani, H. M. V., & Khayatzadeh, A. (2002). Transient flow in pipe networks. Journal of Hydraulic Research, 40(5), 637–644. https://doi.org/10.1080/00221680209499908
  • Sibetheros, I. A., Holley, E. R., & Branski, J. M. (1991). Spline interpolations for water hammer analysis. Journal of Hydraulic Engineering, 117(10), 1332–1351. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1332)
  • Sturm, T. W. (2010). Open channel hydraulics. McGraw-Hill.
  • Sun, W.-K., Zhang, L.-W., & Liew, K. M. (2022). Adaptive particle refinement strategies in smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 389, Article 114276. https://doi.org/10.1016/j.cma.2021.114276
  • Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2013). Shallow water SPH for flooding with dynamic particle coalescing and splitting. Advances in Water Resources, 58, 10–23. https://doi.org/10.1016/j.advwatres.2013.04.007
  • Wiggert, D. C., & Sundquist, M. J. (1977). Fixed-grid characteristics for pipeline transients. Journal of Hydraulic Engineering, 103(12), 1403–1416.
  • Wylie, E. B., & Streeter, V. L. (1978). Fluid transients. McGraw-Hill Book Co.
  • Wylie, E. B., Streeter, V. L., & Suo, L. S. (1993). Fluid transients in systems. Prentice-Hall.
  • Xing, L., & Sela, L. (2020). Transient simulations in water distribution networks: TSNet python package. Advances in Engineering Software, 149, Article 102884. https://doi.org/10.1016/j.advengsoft.2020.102884
  • Zeidan, M., & Ostfeld, A. (2022). Unsteady friction modeling technique for Lagrangian approaches in transient simulations. Water, 14(15), Article 2437. https://doi.org/10.3390/w14152437
  • Zeng, W., Zecchin, A. C., & Lambert, M. F. (2022). Elastic water column model for hydraulic transient analysis of pipe networks. Journal of Hydraulic Engineering, 148(12), Article 04022027. https://doi.org/10.1061/(ASCE)HY.1943-7900.0002028
  • Zhao, M., & Ghidaoui, M. S. (2004). Godunov-type solutions for water hammer flows. Journal of Hydraulic Engineering, 130(4), 341–348. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(341)